Refine
Document Type
- Conference Proceeding (23)
- Article (5)
Keywords
- AAL (1)
- AHI (1)
- Atmung (1)
- Biomedical signal processing (1)
- Biomedical time series (1)
- Biosignal analysis (1)
- Biovital signal (2)
- Breathing (2)
- Butterworth filter (1)
- Deep Learning (1)
Institute
The main aim of presented in this manuscript research is to compare the results of objective and subjective measurement of sleep quality for older adults (65+) in the home environment. A total amount of 73 nights was evaluated in this study. Placing under the mattress device was used to obtain objective measurement data, and a common question on perceived sleep quality was asked to collect the subjective sleep quality level. The achieved results confirm the correlation between objective and subjective measurement of sleep quality with the average standard deviation equal to 2 of 10 possible quality points.
The scoring of sleep stages is an essential part of sleep studies. The main objective of this research is to provide an algorithm for the automatic classification of sleep stages using signals that may be obtained in a non-obtrusive way. After reviewing the relevant research, the authors selected a multinomial logistic regression as the basis for their approach. Several parameters were derived from movement and breathing signals, and their combinations were investigated to develop an accurate and stable algorithm. The algorithm was implemented to produce successful results: the accuracy of the recognition of Wake/NREM/REM stages is equal to 73%, with Cohen's kappa of 0.44 for the analyzed 19324 sleep epochs of 30 seconds each. This approach has the advantage of using the only movement and breathing signals, which can be recorded with less effort than heart or brainwave signals, and requiring only four derived parameters for the calculations. Therefore, the new system is a significant improvement for non-obtrusive sleep stage identification compared to existing approaches.
oday many scientific works are using deep learning algorithms and time series, which can detect physiological events of interest. In sleep medicine, this is particularly relevant in detecting sleep apnea, specifically in detecting obstructive sleep apnea events. Deep learning algorithms with different architectures are used to achieve decent results in accuracy, sensitivity, etc. Although there are models that can reliably determine apnea and hypopnea events, another essential aspect to consider is the explainability of these models, i.e., why a model makes a particular decision. Another critical factor is how these deep learning models determine how severe obstructive sleep apnea is in patients based on the apnea-hypopnea index (AHI). Deep learning models trained by two approaches for AHI determination are exposed in this work. Approaches vary depending on the data format the models are fed: full-time series and window-based time series.
Sleep analysis using a Polysomnography system is difficult and expensive. That is why we suggest a non-invasive and unobtrusive measurement. Very few people want the cables or devices attached to their bodies during sleep. The proposed approach is to implement a monitoring system, so the subject is not bothered. As a result, the idea is a non-invasive monitoring system based on detecting pressure distribution. This system should be able to measure the pressure differences that occur during a single heartbeat and during breathing through the mattress. The system consists of two blocks signal acquisition and signal processing. This whole technology should be economical to be affordable enough for every user. As a result, preprocessed data is obtained for further detailed analysis using different filters for heartbeat and respiration detection. In the initial stage of filtration, Butterworth filters are used.
Sleep quality and in general, behavior in bed can be detected using a sleep state analysis. These results can help a subject to regulate sleep and recognize different sleeping disorders. In this work, a sensor grid for pressure and movement detection supporting sleep phase analysis is proposed. In comparison to the leading standard measuring system, which is Polysomnography (PSG), the system proposed in this project is a non-invasive sleep monitoring device. For continuous analysis or home use, the PSG or wearable Actigraphy devices tends to be uncomfortable. Besides this fact, they are also very expensive. The system represented in this work classifies respiration and body movement with only one type of sensor and also in a non-invasive way. The sensor used is a pressure sensor. This sensor is low cost and can be used for commercial proposes. The system was tested by carrying out an experiment that recorded the sleep process of a subject. These recordings showed the potential for classification of breathing rate and body movements. Although previous researches show the use of pressure sensors in recognizing posture and breathing, they have been mostly used by positioning the sensors between the mattress and bedsheet. This project however, shows an innovative way to position the sensors under the mattress.
The purpose of this paper is to examine the effects of perceived stress on traffic and road safety. One of the leading causes of stress among drivers is the feeling of having a lack of control during the driving process. Stress can result in more traffic accidents, an increase in driver errors, and an increase in traffic violations. To study this phenomenon, the Stress Perceived Questionnaire (PSQ) was used to evaluate the perceived stress while driving in a simulation. The study was conducted with participants from Germany, and they were grouped into different categories based on their emotional stability. Each participant was monitored using wearable devices that measured their instantaneous heart rate (HR). The preference for wearable devices was due to their non-intrusive and portable nature. The results of this study provide an overview of how stress can affect traffic and road safety, which can be used for future research or to implement strategies to reduce road accidents and promote traffic safety.
Cardiovascular diseases are directly or indirectly responsible for up to 38.5% of all deaths in Germany and thus represent the most frequent cause of death. At present, heart diseases are mainly discovered by chance during routine visits to the doctor or when acute symptoms occur. However, there is no practical method to proactively detect diseases or abnormalities of the heart in the daily environment and to take preventive measures for the person concerned. Long-term ECG devices, as currently used by physicians, are simply too expensive, impractical, and not widely available for everyday use. This work aims to develop an ECG device suitable for everyday use that can be worn directly on the body. For this purpose, an already existing hardware platform will be analyzed, and the corresponding potential for improvement will be identified. A precise picture of the existing data quality is obtained by metrological examination, and corresponding requirements are defined. Based on these identified optimization potentials, a new ECG device is developed. The revised ECG device is characterized by a high integration density and combines all components directly on one board except the battery and the ECG electrodes. The compact design allows the device to be attached directly to the chest. An integrated microcontroller allows digital signal processing without the need for an additional computer. Central features of the evaluation are a peak detection for detecting R-peaks and a calculation of the current heart rate based on the RR interval. To ensure the validity of the detected R-peaks, a model of the anatomical conditions is used. Thus, unrealistic RR-intervals can be excluded. The wireless interface allows continuous transmission of the calculated heart rate. Following the development of hardware and software, the results are verified, and appropriate conclusions about the data quality are drawn. As a result, a very compact and wearable ECG device with different wireless technologies, data storage, and evaluation of RR intervals was developed. Some tests yelled runtimes up to 24 hours with wireless Lan activated and streaming.
In previous studies, we used a method for detecting stress that was based exclusively on heart rate and ECG for differentiation between such situations as mental stress, physical activity, relaxation, and rest. As a response of the heart to these situations, we observed different behavior in the Root Mean Square of the Successive differences heartbeats (RMSSD). This study aims to analyze Virtual Reality via a virtual reality headset as an effective stressor for future works. The value of the Root Mean Square of the Successive Differences is an important marker for the parasympathetic effector on the heart and can provide information about stress. For these measurements, the RR interval was collected using a breast belt. In these studies, we can observe the Root Mean Square of the successive differences heartbeats. Additional sensors for the analysis were not used. We conducted experiments with ten subjects that had to drive a simulator for 25 minutes using monitors and 25 minutes using virtual reality headset. Before starting and after finishing each simulation, the subjects had to complete a survey in which they had to describe their mental state. The experiment results show that driving using virtual reality headset has some influence on the heart rate and RMSSD, but it does not significantly increase the stress of driving.
Sustainable technologies are being increasingly used in various areas of human life. While they have a multitude of benefits, they are especially useful in health monitoring, especially for certain groups of people, such as the elderly. However, there are still several issues that need to be addressed before its use becomes widespread. This work aims to clarify the aspects that are of great importance for increasing the acceptance of the use of this type of technology in the elderly. In addition, we aim to clarify whether the technologies that are already available are able to ensure acceptable accuracy and whether they could replace some of the manual approaches that are currently being used. A two-week study with people 65 years of age and over was conducted to address the questions posed here, and the results were evaluated. It was demonstrated that simplicity of use and automatic functioning play a crucial role. It was also concluded that technology cannot yet completely replace traditional methods such as questionnaires in some areas. Although the technologies that were tested were classified as being “easy to use”, the elderly population in the current study indicated that they were not sure that they would use these technologies regularly in the long term because the added value is not always clear, among other issues. Therefore, awareness-raising must take place in parallel with the development of technologies and services.
Healthy sleep is required for sufficient restoration of the human body and brain. Therefore, in the case of sleep disorders, appropriate therapy should be applied timely, which requires a prompt diagnosis. Traditionally, a sleep diary is a part of diagnosis and therapy monitoring for some sleep disorders, such as cognitive behaviour therapy for insomnia. To automatise sleep monitoring and make it more comfortable for users, substituting a sleep diary with a smartwatch measurement could be considered. With the aim of providing accurate results, a study with a total of 30 night recordings was conducted. Objective sleep measurement with a Samsung Galaxy Watch 4 was compared with a subjective approach (sleep diary), evaluating the four relevant sleep characteristics: time of getting asleep, wake up time, sleep efficiency (SE), and total sleep time (TST). The performed analysis has demonstrated that the median difference between both measurement approaches was equal to 7 and 3 minutes for a time of getting asleep and wake up time correspondingly, which allows substituting a subjective measurement with a smartwatch. The SE was determined with a median difference between the two measurement methods of 5.22%. This result also implicates a possibility of substitution. Some single recordings have indicated a higher variance between the two approaches. Therefore, the conclusion can be made that a substitution provides reliable results primarily in the case of long-term monitoring. The results of the evaluation of the TST measurement do not allow to recommend substitution of the measurement method.