Refine
Year of publication
Document Type
- Conference Proceeding (26)
- Article (10)
Keywords
- 1D-CNN (1)
- AAL (1)
- AHI (1)
- Atmung (1)
- Ballistocardiography (1)
- Biomedical signal processing (1)
- Biomedical time series (1)
- Biosignal analysis (1)
- Biovital signal (2)
- Body Position (1)
Institute
The scoring of sleep stages is an essential part of sleep studies. The main objective of this research is to provide an algorithm for the automatic classification of sleep stages using signals that may be obtained in a non-obtrusive way. After reviewing the relevant research, the authors selected a multinomial logistic regression as the basis for their approach. Several parameters were derived from movement and breathing signals, and their combinations were investigated to develop an accurate and stable algorithm. The algorithm was implemented to produce successful results: the accuracy of the recognition of Wake/NREM/REM stages is equal to 73%, with Cohen's kappa of 0.44 for the analyzed 19324 sleep epochs of 30 seconds each. This approach has the advantage of using the only movement and breathing signals, which can be recorded with less effort than heart or brainwave signals, and requiring only four derived parameters for the calculations. Therefore, the new system is a significant improvement for non-obtrusive sleep stage identification compared to existing approaches.
The perception of the amount of stress is subjective to every person, and the perception of it changes depending on many factors. One of the factors that has an impact on perceived stress is the emotional state. In this work, we compare the emotional state of 40 German driving students and present different partitions that can be advantageous for using artificial intelligence and classification. Like this, we evaluate the data quality and prepare for the specific use. The Stress Perceived Questionnaire (PSQ20) was employed to assess the level of stress experienced by individuals while participating in a driving simulation for 5 and 25 min. As a result of our analysis, we present a categorisation of various emotional states into intervals, comparing different classifications and facilitating a more straightforward implementation of artificial intelligence for classification purposes.
The main aim of presented in this manuscript research is to compare the results of objective and subjective measurement of sleep quality for older adults (65+) in the home environment. A total amount of 73 nights was evaluated in this study. Placing under the mattress device was used to obtain objective measurement data, and a common question on perceived sleep quality was asked to collect the subjective sleep quality level. The achieved results confirm the correlation between objective and subjective measurement of sleep quality with the average standard deviation equal to 2 of 10 possible quality points.
Sustainable technologies are being increasingly used in various areas of human life. While they have a multitude of benefits, they are especially useful in health monitoring, especially for certain groups of people, such as the elderly. However, there are still several issues that need to be addressed before its use becomes widespread. This work aims to clarify the aspects that are of great importance for increasing the acceptance of the use of this type of technology in the elderly. In addition, we aim to clarify whether the technologies that are already available are able to ensure acceptable accuracy and whether they could replace some of the manual approaches that are currently being used. A two-week study with people 65 years of age and over was conducted to address the questions posed here, and the results were evaluated. It was demonstrated that simplicity of use and automatic functioning play a crucial role. It was also concluded that technology cannot yet completely replace traditional methods such as questionnaires in some areas. Although the technologies that were tested were classified as being “easy to use”, the elderly population in the current study indicated that they were not sure that they would use these technologies regularly in the long term because the added value is not always clear, among other issues. Therefore, awareness-raising must take place in parallel with the development of technologies and services.
This document presents an algorithm for a non-obtrusive recognition of Sleep/Wake states using signals derived from ECG, respiration, and body movement captured while lying in a bed. As a core mathematical base of system data analytics, multinomial logistic regression techniques were chosen. Derived parameters of the three signals are used as the input for the proposed method. The overall achieved accuracy rate is 84% for Wake/Sleep stages, with Cohen’s kappa value 0.46. The presented algorithm should support experts in analyzing sleep quality in more detail. The results confirm the potential of this method and disclose several ways for its improvement.
Stress and physical activities are important aspects of life of people. Body reactions on stress and on physical activities can be very similar but long-term stress leads to diseases and damages the body. Currently there is no method to differentiate easily and clearly between these two aspects in a time slot. We have confronted this problem while developing a mobile system for detection and analysis of stress. This paper presents an approach, which uses a long-term monitor with ECG/EKG capabilities and analysis of the heart rate data that is extracted from the device. The focus of the work is to find characteristics that are useful for differentiation between physical activity and stress.
Sleep quality and in general, behavior in bed can be detected using a sleep state analysis. These results can help a subject to regulate sleep and recognize different sleeping disorders. In this work, a sensor grid for pressure and movement detection supporting sleep phase analysis is proposed. In comparison to the leading standard measuring system, which is Polysomnography (PSG), the system proposed in this project is a non-invasive sleep monitoring device. For continuous analysis or home use, the PSG or wearable Actigraphy devices tends to be uncomfortable. Besides this fact, they are also very expensive. The system represented in this work classifies respiration and body movement with only one type of sensor and also in a non-invasive way. The sensor used is a pressure sensor. This sensor is low cost and can be used for commercial proposes. The system was tested by carrying out an experiment that recorded the sleep process of a subject. These recordings showed the potential for classification of breathing rate and body movements. Although previous researches show the use of pressure sensors in recognizing posture and breathing, they have been mostly used by positioning the sensors between the mattress and bedsheet. This project however, shows an innovative way to position the sensors under the mattress.
The process of restoring our body and brain from fatigue is directly depend-ing on the quality of sleep. It can be determined from the report of the sleep study results. Classification of sleep stages is the first step of this study and this includes the measurement of biovital data and its further processing.
In this work, the sleep analysis system is based on a hardware sensor net, namely a grid of 24 pressure sensors, supporting sleep phase recognition. In comparison to the leading standard, which is polysomnography, the proposed approach is a non-invasive system. It recognises respiration and body move-ment with only one type of low-cost pressure sensors forming a mesh archi-tecture. The nodes implement as a series of pressure sensors connected to a low-power and performant microcontroller. All nodes are connected via a system wide bus with address arbitration. The embedded processor is the mesh network endpoint that enables network configuration, storing and pre-processing of the data, external data access and visualization.
The system was tested by executing experiments recording the sleep of different healthy young subjects. The results obtained have indicated the po-tential to detect breathing rate and body movement. A major difference of this system in comparison to other approaches is the innovative way to place the sensors under the mattress. This characteristic facilitates the continuous using of the system without any influence on the common sleep process.