Refine
Year of publication
Document Type
- Conference Proceeding (23)
- Article (8)
Keywords
- 1D-CNN (1)
- AAL (1)
- AHI (1)
- Atmung (1)
- Ballistocardiography (1)
- Biomedical signal processing (1)
- Biomedical time series (1)
- Biosignal analysis (1)
- Biovital signal (2)
- Breathing (2)
Institute
The main aim of presented in this manuscript research is to compare the results of objective and subjective measurement of sleep quality for older adults (65+) in the home environment. A total amount of 73 nights was evaluated in this study. Placing under the mattress device was used to obtain objective measurement data, and a common question on perceived sleep quality was asked to collect the subjective sleep quality level. The achieved results confirm the correlation between objective and subjective measurement of sleep quality with the average standard deviation equal to 2 of 10 possible quality points.
The scoring of sleep stages is an essential part of sleep studies. The main objective of this research is to provide an algorithm for the automatic classification of sleep stages using signals that may be obtained in a non-obtrusive way. After reviewing the relevant research, the authors selected a multinomial logistic regression as the basis for their approach. Several parameters were derived from movement and breathing signals, and their combinations were investigated to develop an accurate and stable algorithm. The algorithm was implemented to produce successful results: the accuracy of the recognition of Wake/NREM/REM stages is equal to 73%, with Cohen's kappa of 0.44 for the analyzed 19324 sleep epochs of 30 seconds each. This approach has the advantage of using the only movement and breathing signals, which can be recorded with less effort than heart or brainwave signals, and requiring only four derived parameters for the calculations. Therefore, the new system is a significant improvement for non-obtrusive sleep stage identification compared to existing approaches.
Stress is recognized as a predominant disease with raising costs for rehabilitation and treatment. Currently there several different approaches that can be used for determining and calculating the stress levels. Usually the methods for determining stress are divided in two categories. The first category do not require any special equipment for measuring the stress. This category useless the variation in the behaviour patterns that occur while stress. The core disadvantage for the category is their limitation to specific use case. The second category uses laboratories instruments and biological sensors. This category allow to measure stress precisely and proficiently but on the same time they are not mobile and transportable and do not support real-time feedback. This work presents a mobile system that provides the calculation of stress. For achieving this, the of a mobile ECG sensor is analysed, processed and visualised over a mobile system like a smartphone. This work also explains the used stress measurement algorithm. The result of this work is a portable system that can be used with a mobile system like a smartphone as visual interface for reporting the current stress level.
Stress is recognized as a factor of predominant disease and in the future the costs for treatment will increase. The presented approach tries to detect stress in a very basic and easy to implement way, so that the cost for the device and effort to wear it remain low. The user should benefit from the fact that the system offers an easy interface reporting the status of his body in real time. In parallel, the system provides interfaces to pass the obtained data forward for further processing and (professional) analyses, in case the user agrees. The system is designed to be used in every day’s activities and it is not restricted to laboratory use or environments. The implementation of the enhanced prototype shows that the detection of stress and the reporting can be managed using correlation plots and automatic pattern recognition even on a very light-weighted microcontroller platform.
Objective: This paper presents an algorithm for non-invasive sleep stage identification using respiratory, heart rate and movement signals. The algorithm is part of a system suitable for long-term monitoring in a home environment, which should support experts analysing sleep. Approach: As there is a strong correlation between bio-vital signals and sleep stages, multinomial logistic regression was chosen for categorical distribution of sleep stages. Several derived parameters of three signals (respiratory, heart rate and movement) are input for the proposed method. Sleep recordings of five subjects were used for the training of a machine learning model and 30 overnight recordings collected from 30 individuals with about 27 000 epochs of 30 s intervals each were evaluated. Main results: The achieved rate of accuracy is 72% for Wake, NREM, REM (with Cohen's kappa value 0.67) and 58% for Wake, Light (N1 and N2), Deep (N3) and REM stages (Cohen's kappa is 0.50). Our approach has confirmed the potential of this method and disclosed several ways for its improvement. Significance: The results indicate that respiratory, heart rate and movement signals can be used for sleep studies with a reasonable level of accuracy. These inputs can be obtained in a non-invasive way applying it in a home environment. The proposed system introduces a convenient approach for a long-term monitoring system which could support sleep laboratories. The algorithm which was developed allows for an easy adjustment of input parameters that depend on available signals and for this reason could also be used with various hardware systems.
This document presents an algorithm for a non-obtrusive recognition of Sleep/Wake states using signals derived from ECG, respiration, and body movement captured while lying in a bed. As a core mathematical base of system data analytics, multinomial logistic regression techniques were chosen. Derived parameters of the three signals are used as the input for the proposed method. The overall achieved accuracy rate is 84% for Wake/Sleep stages, with Cohen’s kappa value 0.46. The presented algorithm should support experts in analyzing sleep quality in more detail. The results confirm the potential of this method and disclose several ways for its improvement.
Stress and physical activities are important aspects of life of people. Body reactions on stress and on physical activities can be very similar but long-term stress leads to diseases and damages the body. Currently there is no method to differentiate easily and clearly between these two aspects in a time slot. We have confronted this problem while developing a mobile system for detection and analysis of stress. This paper presents an approach, which uses a long-term monitor with ECG/EKG capabilities and analysis of the heart rate data that is extracted from the device. The focus of the work is to find characteristics that are useful for differentiation between physical activity and stress.
Sleep quality and in general, behavior in bed can be detected using a sleep state analysis. These results can help a subject to regulate sleep and recognize different sleeping disorders. In this work, a sensor grid for pressure and movement detection supporting sleep phase analysis is proposed. In comparison to the leading standard measuring system, which is Polysomnography (PSG), the system proposed in this project is a non-invasive sleep monitoring device. For continuous analysis or home use, the PSG or wearable Actigraphy devices tends to be uncomfortable. Besides this fact, they are also very expensive. The system represented in this work classifies respiration and body movement with only one type of sensor and also in a non-invasive way. The sensor used is a pressure sensor. This sensor is low cost and can be used for commercial proposes. The system was tested by carrying out an experiment that recorded the sleep process of a subject. These recordings showed the potential for classification of breathing rate and body movements. Although previous researches show the use of pressure sensors in recognizing posture and breathing, they have been mostly used by positioning the sensors between the mattress and bedsheet. This project however, shows an innovative way to position the sensors under the mattress.
The process of restoring our body and brain from fatigue is directly depend-ing on the quality of sleep. It can be determined from the report of the sleep study results. Classification of sleep stages is the first step of this study and this includes the measurement of biovital data and its further processing.
In this work, the sleep analysis system is based on a hardware sensor net, namely a grid of 24 pressure sensors, supporting sleep phase recognition. In comparison to the leading standard, which is polysomnography, the proposed approach is a non-invasive system. It recognises respiration and body move-ment with only one type of low-cost pressure sensors forming a mesh archi-tecture. The nodes implement as a series of pressure sensors connected to a low-power and performant microcontroller. All nodes are connected via a system wide bus with address arbitration. The embedded processor is the mesh network endpoint that enables network configuration, storing and pre-processing of the data, external data access and visualization.
The system was tested by executing experiments recording the sleep of different healthy young subjects. The results obtained have indicated the po-tential to detect breathing rate and body movement. A major difference of this system in comparison to other approaches is the innovative way to place the sensors under the mattress. This characteristic facilitates the continuous using of the system without any influence on the common sleep process.
Die Erholung unseres Körpers und Gehirns von Müdigkeit ist direkt abhängig von der Qualität des Schlafes, die aus den Ergebnissen einer Schlafstudie ermittelt werden kann. Die Klassifizierung der Schlafstadien ist der erste Schritt dieser Studie und beinhaltet die Messung von Biovitaldaten und deren weitere Verarbeitung. Das non-invasive Schlafanalyse-System basiert auf einem Hardware-Sensornetz aus 24 Drucksensoren, das die Schlafphasenerkennung ermöglicht. Die Drucksensoren sind mit einem energieeffizienten Mikrocontroller über einen systemweiten Bus mit Adressarbitrierung verbunden. Ein wesentlicher Unterschied dieses Systems im Vergleich zu anderen Ansätzen ist die innovative Art, die Sensoren unter der Matratze zu platzieren. Diese Eigenschaft erleichtert die kontinuierliche Nutzung des Systems ohne fühlbaren Einfluss auf das gewohnte Bett. Das System wurde getestet, indem Experimente durchgeführt wurden, die den Schlaf verschiedener gesunder junger Personen aufzeichneten. Die ersten Ergebnisse weisen auf das Potenzial hin, nicht nur Atemfrequenz und Körperbewegung, sondern auch Herzfrequenz zu erfassen.