Refine
Document Type
- Conference Proceeding (2)
- Article (1)
Language
- English (3)
Has Fulltext
- no (3)
Keywords
- Biomedical signal processing (1)
- Emotion status (1)
- Regression analysis (1)
- Sleep medicine (1)
- Sleep quality (1)
- Sleep stages (1)
- Sleep study (1)
- Stress (1)
Institute
The scoring of sleep stages is an essential part of sleep studies. The main objective of this research is to provide an algorithm for the automatic classification of sleep stages using signals that may be obtained in a non-obtrusive way. After reviewing the relevant research, the authors selected a multinomial logistic regression as the basis for their approach. Several parameters were derived from movement and breathing signals, and their combinations were investigated to develop an accurate and stable algorithm. The algorithm was implemented to produce successful results: the accuracy of the recognition of Wake/NREM/REM stages is equal to 73%, with Cohen's kappa of 0.44 for the analyzed 19324 sleep epochs of 30 seconds each. This approach has the advantage of using the only movement and breathing signals, which can be recorded with less effort than heart or brainwave signals, and requiring only four derived parameters for the calculations. Therefore, the new system is a significant improvement for non-obtrusive sleep stage identification compared to existing approaches.
The perception of the amount of stress is subjective to every person, and the perception of it changes depending on many factors. One of the factors that has an impact on perceived stress is the emotional state. In this work, we compare the emotional state of 40 German driving students and present different partitions that can be advantageous for using artificial intelligence and classification. Like this, we evaluate the data quality and prepare for the specific use. The Stress Perceived Questionnaire (PSQ20) was employed to assess the level of stress experienced by individuals while participating in a driving simulation for 5 and 25 min. As a result of our analysis, we present a categorisation of various emotional states into intervals, comparing different classifications and facilitating a more straightforward implementation of artificial intelligence for classification purposes.
The main aim of presented in this manuscript research is to compare the results of objective and subjective measurement of sleep quality for older adults (65+) in the home environment. A total amount of 73 nights was evaluated in this study. Placing under the mattress device was used to obtain objective measurement data, and a common question on perceived sleep quality was asked to collect the subjective sleep quality level. The achieved results confirm the correlation between objective and subjective measurement of sleep quality with the average standard deviation equal to 2 of 10 possible quality points.