Refine
Document Type
- Article (7)
- Conference Proceeding (3)
- Report (1)
Language
- English (11)
Keywords
- Artificial intelligence (1)
- Capital project performance (1)
- City resilience (1)
- Climate action (1)
- Climate change (1)
- Construction industry (1)
- Cooperatives (1)
- Cyberphysical systems (1)
- Data (1)
- Data Cooperative (1)
Institute
The construction sector, characterized by a large number of small and medium-sized enterprises (SMEs), faces particular challenges in the digital age. Data cooperatives, such as the Bavarian Construction Data Cooperative (Bauform eG), currently being founded, represent a transformative solution by providing these SMEs with a platform to leverage their collective strength in data management, sharing and use. Initiated by GemeinWerk Ventures and supported by the Bavarian Construction Industry Association, Bauform eG provides shared services and construction data through its member companies via a digital collaboration platform. This innovative approach improves collaboration and organization within the construction value chain and aims at governance innovation to enable trustful data exchange between stakeholders and create a pre-competitive space of trust. This model promotes SME productivity and innovation through ecosystem collaboration and represents an important step in the digital transformation of the construction sector.
Digital federated platforms and data cooperatives for secure, trusted and sovereign data exchange will play a central role in the construction industry of the future. With the help of platforms, cooperatives and their novel value creation, the digital transformation and the degree of organization of the construction value chain can be taken to a new level of collaboration. The goal of this research project was to develop an experimental prototype for a federated innovation data platform along with a suitable exemplary use case. The prototype is to serve the construction industry as a demonstrator for further developments and form the basis for an innovation platform. It exemplifies how an overall concept is concretely implemented along one or more use cases that address high-priority industry pain points. This concept will create a blueprint and a framework for further developments, which will then be further established in the market. The research project illuminates the perspective of various governance innovations to increase industry collaboration, productivity and capital project performance and transparency as well as the overall potential of possible platform business models. However, a comprehensive expert survey revealed that there are considerable obstacles to trust-based data exchange between the key stakeholders in the industry value network. The obstacles to cooperation are predominantly not of a technical nature but rather of a competitive, predominantly trust-related nature. To overcome these obstacles and create a pre-competitive space of trust, the authors therefore propose the governance structure of a data cooperative model, which is discussed in detail in this paper.
Twenty-first century infrastructure needs to respond to changing demographics, becoming climate neutral, resilient and economically affordable, while remaining a driver for development and shared prosperity. However, the infrastructure sector remains one of the least innovative and digitalised, plagued by delays, cost overruns and benefit shortfalls (Cantarelli et al. 2008; Flyvbjerg, 2007; Flyvbjerg et al., 2003; Flyvbjerg et al., 2004). The root cause is the prevailing fragmentation of the infrastructure sector (Fellows and Liu, 2012). To help overcome these challenges, integration of the value chain is needed. This could be achieved through a use-case-based creation of federated ecosystems connecting open and trusted data spaces and advanced services applied to infrastructure projects. Such digital platforms enable full-lifecycle participation and responsible governance guided by a shared infrastructure vision. Digital federation enables secure and sovereign data exchange and thus collaboration across the silos within the infrastructure sector and between industries as well as within and between countries. Such an approach to infrastructure technology policy would not rely on technological solutionism but proposes the development of open and trusted data alliances. Federated data spaces provide access to the emerging data economy, especially for SMEs, and can foster the innovation of new digital services. Such responsible digital governance can help make the infrastructure sector more resilient, efficient and aligned with the realisation of ambitious decarbonisation and environmental protection targets. The European Union and the United States have already developed architectures for sovereign and secure data exchange.
Cyberphysical systems together with Artificial Intelligence play vital roles in reducing, eliminating, and removing greenhouse gas emissions across sectors. Electrification with renewables introduces complexity in systems in the deployment, integration, and efficient orchestration of electrified economic systems. AI-driven cyberphysical systems are uniquely suited to tackle this complexity, potentially accelerating the transition towards a low-carbon economy. The objective of this policy brief is to advocate for the mainstreaming of AI-driven cyberphysical systems for climate change risk mitigation and adaptation. To effectively and more rapidly realize the Intelligent Decarbonation potential, the concept of AI-driven cyberphysical systems must be elevated to a global level of collaboration and coordination, fostering research and development, capacity building, as well as knowledge and technology transfer. Drawing on a multidisciplinary, international study about intelligent decarbonization use cases, this brief also highlights factors impeding the transition to carbon neutrality and risks associated with technology determinism. The importance of governance is emphasized to avoid unwanted path dependency and avert a technology-solutionist approach dominating climate policy that delivers limited results. Given only 12% of the Sustainable Development Goals have been realized, a condensed version of this policy brief was submitted to the India T20, a G20 engagement group, urging global collaboration to prioritize AI-driven CPSs.
Network effects, economies of scale, and lock-in-effects increasingly lead to a concentration of digital resources and capabilities, hindering the free and equitable development of digital entrepreneurship, new skills, and jobs, especially in small communities and their small and medium-sized enterprises (“SMEs”). To ensure the affordability and accessibility of technologies, promote digital entrepreneurship and community well-being, and protect digital rights, we propose data cooperatives as a vehicle for secure, trusted, and sovereign data exchange. In post-pandemic times, community/SME-led cooperatives can play a vital role by ensuring that supply chains to support digital commons are uninterrupted, resilient, and decentralized. Digital commons and data sovereignty provide communities with affordable and easy access to information and the ability to collectively negotiate data-related decisions. Moreover, cooperative commons (a) provide access to the infrastructure that underpins the modern economy, (b) preserve property rights, and (c) ensure that privatization and monopolization do not further erode self-determination, especially in a world increasingly mediated by AI. Thus, governance plays a significant role in accelerating communities’/SMEs’ digital transformation and addressing their challenges. Cooperatives thrive on digital governance and standards such as open trusted application programming interfaces (“APIs”) that increase the efficiency, technological capabilities, and capacities of participants and, most importantly, integrate, enable, and accelerate the digital transformation of SMEs in the overall process. This review article analyses an array of transformative use cases that underline the potential of cooperative data governance. These case studies exemplify how data and platform cooperatives, through their innovative value creation mechanisms, can elevate digital commons and value chains to a new dimension of collaboration, thereby addressing pressing societal issues. Guided by our research aim, we propose a policy framework that supports the practical implementation of digital federation platforms and data cooperatives. This policy blueprint intends to facilitate sustainable development in both the Global South and North, fostering equitable and inclusive data governance strategies.
Specific climate adaptation and resilience measures can be efficiently designed and implemented at regional and local levels. Climate and environmental databases are critical for achieving the sustainable development goals (SDGs) and for efficiently planning and implementing appropriate adaptation measures. Available federated and distributed databases can serve as necessary starting points for municipalities to identify needs, prioritize resources, and allocate investments, taking into account often tight budget constraints. High-quality geospatial, climate, and environmental data are now broadly available and remote sensing data, e.g., Copernicus services, will be critical. There are forward-looking approaches to use these datasets to derive forecasts for optimizing urban planning processes for local governments. On the municipal level, however, the existing data have only been used to a limited extent. There are no adequate tools for urban planning with which remote sensing data can be merged and meaningfully combined with local data and further processed and applied in municipal planning and decision-making. Therefore, our project CoKLIMAx aims at the development of new digital products, advanced urban services, and procedures, such as the development of practical technical tools that capture different remote sensing and in-situ data sets for validation and further processing. CoKLIMAx will be used to develop a scalable toolbox for urban planning to increase climate resilience. Focus areas of the project will be water (e.g., soil sealing, stormwater drainage, retention, and flood protection), urban (micro)climate (e.g., heat islands and air flows), and vegetation (e.g., greening strategy, vegetation monitoring/vitality). To this end, new digital process structures will be embedded in local government to enable better policy decisions for the future.
This policy brief presents the possibilities of using big data analytics for safe, decarbonised and climate-resilient infrastructure. The policy brief focuses on current constraints and limitations to applying big data analytics to the infrastructure ecosystem and presents several examples and best practices for different infrastructure sectors and at different policy levels (national, municipal) to highlight recommendations and policy requirements needed for deep digital transformation and sustainable solutions in infrastructure planning and delivery.
We call for a paradigm shift in engineering education. We are entering the era of the Fourth Industrial Revolution (“4IR”), accelerated by Artificial Intelligence (“AI”). Disruptive changes affect all industrial sectors and society, leading to increased uncertainty that makes it impossible to predict what lies ahead. Therefore, gradual cultural change in education is no longer an option to ease social pain. The vast majority of engineering education and training systems, which have remained largely static and underinvested for decades, are inadequate for the emerging 4IR and AI labour markets. Nevertheless, some positive developments can be observed in the reorientation of the engineering education sector. Novel approaches to engineering education are already providing distinctive, technology-enhanced, personalised, student-centred curriculum experiences within an integrated and unified education system. We need to educate engineering students for a future whose key characteristics are volatility, uncertainty, complexity and ambiguity (“VUCA”). Talent and skills gaps are expected to increase in all industries in the coming years. The authors argue for an engineering curriculum that combines timeless didactic traditions such as Socratic inquiry, mastery-based and project-based learning and first-principles thinking with novel elements, e.g., student-centred active and e-learning with a focus on case studies, as well as visualization/metaverse and gamification elements discussed in this paper, and a refocusing of engineering skills and knowledge enhanced by AI on human qualities such as creativity, empathy and dexterity. These skills strengthen engineering students’ perceptions of the world and the decisions they make as a result. This 4IR engineering curriculum will prepare engineering students to become curious engineers and excellent collaborators who navigate increasingly complex multistakeholder ecosystems.
Twenty-first century infrastructure needs to respond to changing demographics, becoming climate neutral, resilient, and economically affordable, while remaining a driver for development and shared prosperity. However, the infrastructure sector remains one of the least innovative and digitalized, plagued by delays, cost overruns, and benefit shortfalls. The authors assessed trends and barriers in the planning and delivery of infrastructure based on secondary research, qualitative
interviews with internationally leading experts, and expert workshops. The analysis concludes that the root-cause of the industry’s problems is the prevailing fragmentation of the infrastructure value chain and a lacking long-term vision for infrastructure. To help overcome these challenges, an integration of the value chain is needed. The authors propose that this could be achieved through a use-case-based, as well as vision and governance-driven creation of federated digital platforms applied to infrastructure projects and outline a concept. Digital platforms enable full-lifecycle participation and responsible governance guided by a shared infrastructure vision. This paper has contributed as policy recommendation to the Group of Twenty (G20) in 2021.
This research project has been awarded as part of the research competition organized by Connect2Recover, which is a global initiative by the International Telecommunication Union (ITU) with the priority of reinforcing and strengthening the digital infrastructure and ecosystems of developing countries. Carried out by an international and transdisciplinary research consortium, the project sets out to analyze the prospects of digital federation and data sharing within the context of Botswana. Considering the country’s stage of economic and digital development, the project team identified Botswana’s smallholder agricultural sector as the most important area of digital transformation given the development need of the country’s primary sector.
Derived from semi-structured interviews, a focus group, as well as secondary research, the project team developed a digital transformation roadmap based on three development stages: (a) crowdfarming pilot, (b) crowdfarming marketplace, and (c) digital ecosystem for smallholder agriculture. Based on a detailed review of Botswana’s smallholder agriculture and the government’s digitalization strategy, the report envisions each phase, especially the pilot project, in terms of a minimal viable product. This is to consider the low level of digital penetration of Botswana’s primary sector, while providing an incentive to connect smallholders with consumers, traders, and retailers.
The project team has been successful in receiving commitment from actual smallholder farmers, the farmer association and government, as well as support for the idea of developing a crowdfarming marketplace as a novel production model and, eventually, a digital agriculture ecosystem for smallholder farmers, livestock producers, and agricultural technology companies and start-ups. The report is a proposal for a phase-one pilot project with the objective to advance smallholder agribusiness in Botswana.