Refine
Document Type
- Conference Proceeding (12)
- Article (4)
- Part of a Book (1)
- Doctoral Thesis (1)
- Other Publications (1)
Has Fulltext
- no (19)
Keywords
- Artificial Intelligence (1)
- Business Coaching (1)
- Business Plan (1)
- Business life-cycle (1)
- Business model (2)
- Business plan (4)
- Case studies (1)
- Component (1)
- Content analysis (2)
- Content analysis (keywords) (1)
Technology-based ventures provide an important route for successful technology transfer [1], [2]. Their founders are supported in successful technology commercialization by innovation intermediaries [3]. Accordingly, the performance of an innovation system, at least to some extent, depends on the efficiency of these intermediaries in terms of the impact of their scarce resources on the survival and growth of technology-based ventures. To increase their efficiency, intermediaries typically optimize their "intake" by requesting a formal business plan to base their selection on as a hygiene factor [4]-[7]. Thus, some scholars argue that written business plans show significant distortion as being produced only to attract support from innovation intermediaries [6], [8]. Accordingly, they rarely serve for these addressees as a source of information for analyzing the strengths and weaknesses of ventures, in order to derive actionable conclusions and more effectively support ventures [9], [10]. Addressees search for different indicators in business plans for their evaluation [11]. The descriptions of these indicators only evince little empirical proof for the performance of technology-based venture's [8], [12]. This gap is herein addressed, in contrast to the lacking empirical insight, as the most frequently produced artifact of early-stage technology ventures is at the same time a written business plan [10], [13]. This paper addresses this gap by conceptualizing transaction relations described in the written business plan as a means for working around the inevitable inaccuracies and uncertainties that delimit the explanatory abilities [14] of the snapshot model [10] presented by a business plan. Using a qualitative content analysis, we derive from the descriptions of transaction relations in a written business plan valid indicators for the maturity of the venture's value-network in different dimensions [15]. To this extent, this paper presents the findings from a pre-study that was conducted based on a sample of forty business plans from an overall population of 800 business plans in a longitudinal sample from one of Europe's most active innovation systems, the regional State of Baden-Württemberg. Such findings may be used by innovation intermediaries to enhance their efficiency, by enabling these to not only derive individual support strategies for business acceleration but also to analyze the impact of support measures by reliably monitoring maturity progress in venture activities.
Technology commercialization is described as the most dreadful challenge for technology-based entrepreneurs. The scarcity of resources and limited managerial experience make it a daunting task, putting in danger the whole firm emergence. Prior research has often build upon the resource-based view to propose that the new firms' performance is dependent on their initial resource endowments and configurations. Nevertheless, little is known on how the early-stage decisions of the entrepreneur might influence on the growth of the firm. Scholars have suggested that both technology and market orientation actions could influence the performance and growth of firms in this context; nevertheless, there is limited empirical evidence of the influence of these different orientations in the context of new technology-based firms (NTBFs). In this study we propose to explore the influence of technology and demand creation actions adopting a demand-side view. We use a longitudinal study on a panel dataset (2004-2007) with 249 U.S. new high-technology firms to test our hypothesis. The results point towards a rather limited influence of initial resource configurations, as well as an unexpected influence of market and technology orientation in the growth dimensions of an NTBF. The research holds implications for the management of new technology-based firms and for those interested in supporting the development of technology entrepreneurship.
Evaluation of tech ventures’ evolving business models: rules for performance-related classification
(2022)
At the early stage of a successful tech venture's life cycle, it is assumed that the business model will evolve to higher quality over time. However, there are few empirical insights into business model evolution patterns for the performance-related classification of early-stage tech ventures. We created relevant variables evaluating the evolution of the venture-centric network and the technological proposition of both digital and non-digital ventures' business models using the text of submissions to the official business plan award in the German State of Baden-Württemberg between 2006 and 2012. Applying a principal component analysis/rough set theory mixed methodology, we explore performance-related business model classification rules in the heterogeneous sample of business plans. We find that ventures need to demonstrate real interactions with their customers' needs to survive. The distinguishing success rules are related to patent applications, risk capital, and scaling of the organisation. The rules help practitioners to classify business models in a way that allows them to prioritise action for performance.
Text produced by entrepreneurs represents a data source in entrepreneurship research on venture performance and fund-raising success. Manual text coding of single variables is increasingly assisted or replaced by computer-aided text analysis. Yet, for the development of prediction models with several variables, such dictionary-based text analysis methods are less suitable. Natural language processing techniques are an alternative; however, the implementation is more complex and requires substantial programming skills. More work is required to understand how text analytics can advance entrepreneurship research. This study hence experiments with different artificial intelligence methods rooted in Natural Language Processing and deep learning. It uses 766 business plans to train a model for the automated measurement of transaction relations, a construct which is an indicator for new technology-based firm survival. Empirical findings show that the accuracy of construct measurement can be significantly increased with automated methods and improves with larger amounts of training data. Language complexity sets limits to the precision of automated construct measurement though. We therefore recommend a hybrid approach: making use of the inherent advantages of combining automated with human coding until the amount of training data is sufficiently large to substitute the human coding completely. The study provides insights into the applicability of different text analytics methods in entrepreneurship research and points at future research potential.
We examine to what extent a transaction relation-based value network maturity status of New Technology-Based Firms (NTBFs) is related to their survival. A specific challenge of NTBFs is their lack of market-orientation, which is why the maturity of the ties they form towards the market in terms of customers, financiers, personnel and partners is supposed to be a strong indicator for survival. We analyze a sample of 170 NTBFs by capturing their value network status from business plans and defining their survival status using secondary research. Simple statistical tests and regressions suggest that the official registration of the business is a pre-step for survival that requires industry-specific value network dimension strengths. A sub-sample survival analysis shows that for all NTBFs that have reached registration, regardless of their industry, a stronger customer value network maturity dimension prevents from failure and is thus a significant predictor for survival. Moreover, the analyses partly support the idea that NTBFs from the IT sector are less dependent on a strong value network in the financier dimension to survive. The results are of relevance for both practitioners and researchers in the innovation system: a better understanding of the factors impacting on NTBF survival can help to provide more tailored support services for young firms, increase the effectiveness of resource allocations, and provide a basis for further research.
Growth is a key indicator of the prosperity of an economy. In today's Germany the " Gründerzeit " still describes a period of enormous economic growth. Factors that lead to growth haven't been investigated in the context of the different life cycle stages of early-stage technology ventures so far. This paper proposes a model of early-stage ventures' growth based on factors. From a theoretical angle, we look at the business from the market-based view (MBV) and the resource-based view (RBV) on strategy in the longitudinal perspective of the business life cycle. With this view we get to know what are the stage specific needs and processes of new technology based ventures in order to provide appropriate support. We tested different potential growth indicators for the model with a questionnaire-based survey which was answered by 68 high-tech entrepreneurs. The results suggest that growth factors are stage specific in their relevance. While leading to growth in one stage, certain factors evince no or even negative influence on growth in other stages. Moreover, RBV factors as seen more relevant for the growth than the MBV factors. Further research requires a large and representative population to validate the results. Keywords:-growth factors, early-stage ventures, market-based view, resources based view.
Validity of the business model is a key indicator for buying into ventures in the early-stage. Business models of early-stage ventures decrease in validity when developing the business over the progressing stages of the business life-cycle. By doing so, the ventures are validating their business model when building transaction relationships to the surrounding value network. In prior research, we developed a research design based on existing business innovation proposals (onepager, pitch decks, business plans) that is assumed to evaluate the status of business model validation. The core hypothesis of the research design is that transaction relations represent a strong anchor between the business model and the business reality, thus providing information on the business model validity. In this research, we test this hypothesis by designing and analyzing a survey that was directed to founders taking part in a business plan competition. We compared the relationships described in the submitted business plans to the relations explicitely stated in the follow-up questionnaire. We identified that the described relations to customers, investors, and people (human resources) match the relationships expressed in questionnaires quite well. A significant disagreement, however, exists in the relationships to suppliers. We conclude that there is still a theoretical and empirical gap that leads to disagreement between business plans and reality in the group of suppliers.
New Technology-Based Firms (NTBFs) learn their business in the early-stages of their life-cycle. As a central element of the entrepreneurial learning process, the business model describes the value-creation functions that are conceptualized in different stages of the NTBF’s life-cycle. Transaction relations connect the model with the business reality and ideally mature in strength over time to a functioning value-network. This chapter describes the development of a research design that determines, extracts, and evaluates semantics constructs of this entrepreneurial learning out of a convenient sample and three cohorts of business plans submitted to a business plan award between 2008 and 2010. The analysis shows empirical evidence for the survival and growth of those NTBFs that exhibit a balanced status of entrepreneurial learning in the maturity of the value-network that can be characterized as early startup-stage. The empirical findings of the network theory based business plan analysis will allow for a better explanation of the performance in the entrepreneurial process that is discussed for NTBFs based on theory of organizational learning.