Refine
Document Type
- Conference Proceeding (12)
- Article (4)
- Part of a Book (1)
- Doctoral Thesis (1)
- Other Publications (1)
Has Fulltext
- no (19)
Keywords
- Artificial Intelligence (1)
- Business Coaching (1)
- Business Plan (1)
- Business life-cycle (1)
- Business model (2)
- Business plan (4)
- Case studies (1)
- Component (1)
- Content analysis (2)
- Content analysis (keywords) (1)
Vortrag auf dem Doktorandenkolloquium des Kooperativen Promotionskollegs der HTWG, 09.07.2015
Excubation
(2015)
Text produced by entrepreneurs represents a data source in entrepreneurship research on venture performance and fund-raising success. Manual text coding of single variables is increasingly assisted or replaced by computer-aided text analysis. Yet, for the development of prediction models with several variables, such dictionary-based text analysis methods are less suitable. Natural language processing techniques are an alternative; however, the implementation is more complex and requires substantial programming skills. More work is required to understand how text analytics can advance entrepreneurship research. This study hence experiments with different artificial intelligence methods rooted in Natural Language Processing and deep learning. It uses 766 business plans to train a model for the automated measurement of transaction relations, a construct which is an indicator for new technology-based firm survival. Empirical findings show that the accuracy of construct measurement can be significantly increased with automated methods and improves with larger amounts of training data. Language complexity sets limits to the precision of automated construct measurement though. We therefore recommend a hybrid approach: making use of the inherent advantages of combining automated with human coding until the amount of training data is sufficiently large to substitute the human coding completely. The study provides insights into the applicability of different text analytics methods in entrepreneurship research and points at future research potential.
New Technology-Based Firms (NTBFs) learn their business in the early-stages of their life-cycle. As a central element of the entrepreneurial learning process, the business model describes the value-creation functions that are conceptualized in different stages of the NTBF’s life-cycle. Transaction relations connect the model with the business reality and ideally mature in strength over time to a functioning value-network. This chapter describes the development of a research design that determines, extracts, and evaluates semantics constructs of this entrepreneurial learning out of a convenient sample and three cohorts of business plans submitted to a business plan award between 2008 and 2010. The analysis shows empirical evidence for the survival and growth of those NTBFs that exhibit a balanced status of entrepreneurial learning in the maturity of the value-network that can be characterized as early startup-stage. The empirical findings of the network theory based business plan analysis will allow for a better explanation of the performance in the entrepreneurial process that is discussed for NTBFs based on theory of organizational learning.
Business coaching is believed to effectively improve survival and success chances of new technology-based firms (NTBFs). However, not much empirical evidence on the support measure's effectiveness is available. Therefore, a pragmatic two-armed Randomized Controlled Trial (RCT) to test the effect of tactical business coaching on NTBF survival capabilities was designed and, for the most part, carried out. However, due to a lower than expected sample size and great attrition between groups, the RCT reveals deviations from the trial design that impede a thorough data assessment. Based on the data given, a first data analysis does not reveal significant differences in survival capability between the two groups. Thus, to provide guidance for future RCTs in business contexts, lessons learned about how to deal with trickle samples and experiment constellations with third parties carrying out the intervention are drawn.
The business plan is one of the most frequently available artifacts to innovation intermediaries of technology-based ventures' presentations in their early stages [1]–[4]. Agreement on the evaluations of venturing projects based on the business plans highly depends on the individual perspective of the readers [5], [6]. One reason is that little empirical proof exists for descriptions in business plans that suggest survival of early-stage technology ventures [7]–[9]. We identified descriptions of transaction relations [10]–[13] as an anchor of the snapshot model business plan to business reality [13]. In the early-stage, surviving ventures are building transaction relations to human resources, financial resources, and suppliers on the input side, and customers on the output side of the business towards a stronger ego-centric value network [10]–[13]. We conceptualized a multidimensional measurement instrument that evaluates the maturity of this ego-centric value networks based on the transaction relations of different strength levels that are described in business plans of early-stage technology ventures [13]. In this paper, the research design and the instrument are purified to achieve high agreement in the evaluation of business plans [14]–[16]. As a result, we present an overall research design that can reach acceptable quality for quantitative research. The paper so contributes to the literature on business analysis in the early-stage of technology-based ventures and the research technique of content analysis.
The business model canvas (BMC) and the lean start-up manifesto (LSM) have been changing both the entrepreneurial education and, on the practical side, the mindset in setting up innovative ventures since the burst of the dot-com bubble. However, few empirical insights on the business model implementation patterns that distinguish between digital and non-digital innovative ventures exist. Connecting practical management tools to network theory as well as to the theory of organizational learning, this paper investigates evolution patterns of digital and non-digital business models out of the deal flow of an innovation intermediary. For this purpose, a multi-dimensional quantitative content analysis research design is applied to 242 ventures' business plans. The measured strength of transaction relations to customers, suppliers, people, and financiers has been combined with performance indicators of the sampled ventures. The results indicate that in order to succeed, digital ventures iterate their business on the market early and search for investment afterwards. Contrariwise, non-digital ventures already need financial investments in the early stages to set up a product ready to be tested on the market. In both groups we found strong evidence that specific evolutionary patterns relate to higher rates of success.