Refine
Document Type
- Conference Proceeding (20)
- Article (4)
Keywords
- AAL (2)
- Accelerometer (1)
- Accelerometer sensor (1)
- Accelerometers (2)
- Accessibility (1)
- Ambient assisted living (1)
- BCG (1)
- Ballistocardiography (1)
- Ballistokardiographie (1)
- Breathing (1)
Institute
In many cases continuous monitoring of vital signals is required and low intrusiveness is an important requirement. Incorporating monitoring systems in the hospital or home bed could have benefits for patients and caregivers. The objective of this work is the definition of a measurement protocol and the creation of a data set of measurements using commercial and low-cost prototypes devices to estimate heart rate and breathing rate. The experimental data will be used to compare results achieved by the devices and to develop algorithms for feature extraction of vital signals.
In recent decades, it can be observed that a steady increase in the volume of tourism is a stable trend. To offer travel opportunities to all groups, it is also necessary to prepare offers for people in need of long-term care or people with disabilities. One of the ways to improve accessibility could be digital technologies, which could help in planning as well as in carrying out trips. In the work presented, a study of barriers was first conducted, which led to selecting technologies for a test setup after analysis. The main focus was on a mobile app with travel information and 360° tours. The evaluation results showed that both technologies could increase accessibility, but some essential aspects (such as usability, completeness, relevance, etc.) need to be considered when implementing them.
Personalized remote healthcare monitoring is in continuous development due to the technology improvements of sensors and wearable electronic systems. A state of the art of research works on wearable sensors for healthcare applications is presented in this work. Furthermore, a state of the art of wearable devices, chest and wrist band and smartwatches available on the market for health and sport monitoring is presented in this paper. Many activity trackers are commercially available. The prices are continuously reducing and the performances are improving, but commercial devices do not provide raw data and are therefore not useful for research purposes.
Recognition of sleep and wake states is one of the relevant parts of sleep analysis. Performing this measurement in a contactless way increases comfort for the users. We present an approach evaluating only movement and respiratory signals to achieve recognition, which can be measured non-obtrusively. The algorithm is based on multinomial logistic regression and analyses features extracted out of mentioned above signals. These features were identified and developed after performing fundamental research on characteristics of vital signals during sleep. The achieved accuracy of 87% with the Cohen’s kappa of 0.40 demonstrates the appropriateness of a chosen method and encourages continuing research on this topic.
The ballistocardiography is a technique that measures the heart rate from the mechanical vibrations of the body due to the heart movement. In this work a novel noninvasive device placed under the mattress of a bed estimates the heart rate using the ballistocardiography. Different algorithms for heart rate estimation have been developed.
This document presents a new complete standalone system for a recognition of sleep apnea using signals from the pressure sensors placed under the mattress. The developed hardware part of the system is tuned to filter and to amplify the signal. Its software part performs more accurate signal filtering and identification of apnea events. The overall achieved accuracy of the recognition of apnea occurrence is 91%, with the average measured recognition delay of about 15 seconds, which confirms the suitability of the proposed method for future employment. The main aim of the presented approach is the support of the healthcare system with the cost-efficient tool for recognition of sleep apnea in the home environment.
Für die Überwachung des Schlafs zu Hause sind nichtinvasive Methoden besonders gut anwendbar. Die Signale, die häufig überwacht werden, sind Herzfrequenz und Atemfrequenz. Die Ballistokardiographie (BCG)ist eine Technik, bei der die Herzfrequenz aus den mechanischen Schwingungen des Körpers bei jedem Herzzyklus gemessen wird. Kürzlich wurden Übersichtsarbeiten veröffentlicht. Die Untersuchung soll in einem ersten Ansatz bewerten, ob die Herzfrequenz anhand von BCG erkannt werden kann. Die wesentlichen Randbedingungen sind, ob dies gelingt, wenn der Sensor unter der Matratze positioniert wird und kostengünstige Sensoren zum Einsatz kommen.
The recovery of our body and brain from fatigue directly depends on the quality of sleep, which can be determined from the results of a sleep study. The classification of sleep stages is the first step of this study and includes the measurement of vital data and their further processing. The non-invasive sleep analysis system is based on a hardware sensor network of 24 pressure sensors providing sleep phase detection. The pressure sensors are connected to an energy-efficient microcontroller via a system-wide bus. A significant difference between this system and other approaches is the innovative way in which the sensors are placed under the mattress. This feature facilitates the continuous use of the system without any noticeable influence on the sleeping person. The system was tested by conducting experiments that recorded the sleep of various healthy young people. Results indicate the potential to capture respiratory rate and body movement.
The main aim of presented in this manuscript research is to compare the results of objective and subjective measurement of sleep quality for older adults (65+) in the home environment. A total amount of 73 nights was evaluated in this study. Placing under the mattress device was used to obtain objective measurement data, and a common question on perceived sleep quality was asked to collect the subjective sleep quality level. The achieved results confirm the correlation between objective and subjective measurement of sleep quality with the average standard deviation equal to 2 of 10 possible quality points.
The respiratory rate is a vital sign indicating breathing illness. It is necessary to analyze the mechanical oscillations of the patient's body arising from chest movements. An inappropriate holder on which the sensor is mounted, or an inappropriate sensor position is some of the external factors which should be minimized during signal registration. This paper considers using a non-invasive device placed under the bed mattress and evaluates the respiratory rate. The aim of the work is the development of an accelerometer sensor holder for this system. The normal and deep breathing signals were analyzed, corresponding to the relaxed state and when taking deep breaths. The evaluation criterion for the holder's model is its influence on the patient's respiratory signal amplitude for each state. As a result, we offer a non-invasive system of respiratory rate detection, including the mechanical component providing the most accurate values of mentioned respiratory rate.