Refine
Year of publication
Document Type
- Conference Proceeding (77)
- Article (26)
- Part of a Book (2)
- Other Publications (1)
Keywords
- 1D-CNN (1)
- AAL (2)
- AHI (1)
- Accelerometer (3)
- Accelerometer sensor (2)
- Accelerometers (2)
- Accessibility (1)
- Actigraphy (1)
- Activity monitoring (1)
- Algorithm (1)
Institute
The proposed approach applies current unsupervised clustering approaches in a different dynamic manner. Instead of taking all the data as input and finding clusters among them, the given approach clusters Holter ECG data (long-term electrocardiography data from a holter monitor) on a given interval which enables a dynamic clustering approach (DCA). Therefore advanced clustering techniques based on the well known Dynamic Time Warping algorithm are used. Having clusters e.g. on a daily basis, clusters can be compared by defining cluster shape properties. Doing this gives a measure for variation in unsupervised cluster shapes and may reveal unknown changes in healthiness. Embedding this approach into wearable devices offers advantages over the current techniques. On the one hand users get feedback if their ECG data characteristic changes unforeseeable over time which makes early detection possible. On the other hand cluster properties like biggest or smallest cluster may help a doctor in making diagnoses or observing several patients. Further, on found clusters known processing techniques like stress detection or arrhythmia classification may be applied.
To evaluate the quality of a person's sleep it is essential to identify the sleep stages and their durations. Currently, the gold standard in terms of sleep analysis is overnight polysomnography (PSG), during which several techniques like EEG (eletroencephalogram), EOG (electrooculogram), EMG (electromyogram), ECG (electrocardiogram), SpO2 (blood oxygen saturation) and for example respiratory airflow and respiratory effort are recorded. These expensive and complex procedures, applied in sleep laboratories, are invasive and unfamiliar for the subjects and it is a reason why it might have an impact on the recorded data. These are the main reasons why low-cost home diagnostic systems are likely to be advantageous. Their aim is to reach a larger population by reducing the number of parameters recorded. Nowadays, many wearable devices promise to measure sleep quality using only the ECG and body-movement signals. This work presents an android application developed in order to proof the accuracy of an algorithm published in the sleep literature. The algorithm uses ECG and body movement recordings to estimate sleep stages. The pre-recorded signals fed into the algorithm have been taken from physionet1 online database. The obtained results have been compared with those of the standard method used in PSG. The mean agreement ratios between the sleep stages REM, Wake, NREM-1, NREM-2 and NREM-3 were 38.1%, 14%, 16%, 75% and 54.3%.
Stress is recognized as a factor of predominant disease and in the future the costs for treatment will increase. The presented approach tries to detect stress in a very basic and easy to implement way, so that the cost for the device and effort to wear it remain low. The user should benefit from the fact that the system offers an easy interface reporting the status of his body in real time. In parallel, the system provides interfaces to pass the obtained data forward for further processing and (professional) analyses, in case the user agrees. The system is designed to be used in every day’s activities and it is not restricted to laboratory use or environments. The implementation of the enhanced prototype shows that the detection of stress and the reporting can be managed using correlation plots and automatic pattern recognition even on a very light-weighted microcontroller platform.
Stress is becoming an important topic in modern life. The influence of stress results in a higher rate of health disorders such as burnout, heart problems, obesity, asthma, diabetes, depressions and many others. Furthermore individual’s behavior and capabilities could be directly affected leading to altered cognition, inappropriate decision making and problem solving skills. In a dynamic and unpredictable environment, such as automotive, this can result in a higher risk for accidents. Different papers faced the estimation as well as prediction of drivers’ stress level during driving. Another important question is not only the stress level of the driver himself, but also the influence on and of a group of other drivers in the near area. This paper proposes a system, which determines a group of drivers in a near area as clusters and it derives the individual stress level. This information will be analyzed to generate a stress map, which represents a graphical view about road section with a higher stress influence. Aggregated data can be used to generate navigation routes with a lower stress influence to decrease stress influenced driving as well as improve road safety.
Sleep is an important aspect in life of every human being. The average sleep duration for an adult is approximately 7 h per day. Sleep is necessary to regenerate physical and psychological state of a human. A bad sleep quality has a major impact on the health status and can lead to different diseases. In this paper an approach will be presented, which uses a long-term monitoring of vital data gathered by a body sensor during the day and the night supported by mobile application connected to an analyzing system, to estimate sleep quality of its user as well as give recommendations to improve it in real-time. Actimetry and historical data will be used to improve the individual recommendations, based on common techniques used in the area of machine learning and big data analysis.
Stress is recognized as a predominant disease with raising costs for rehabilitation and treatment. Currently there several different approaches that can be used for determining and calculating the stress levels. Usually the methods for determining stress are divided in two categories. The first category do not require any special equipment for measuring the stress. This category useless the variation in the behaviour patterns that occur while stress. The core disadvantage for the category is their limitation to specific use case. The second category uses laboratories instruments and biological sensors. This category allow to measure stress precisely and proficiently but on the same time they are not mobile and transportable and do not support real-time feedback. This work presents a mobile system that provides the calculation of stress. For achieving this, the of a mobile ECG sensor is analysed, processed and visualised over a mobile system like a smartphone. This work also explains the used stress measurement algorithm. The result of this work is a portable system that can be used with a mobile system like a smartphone as visual interface for reporting the current stress level.
There have been substantial research efforts for algorithms to improve continuous and automated assessment of various health-related questions in recent years. This paper addresses the deployment gap between those improving algorithms and their usability in care and mobile health applications. In practice, most algorithms require significant and founded technical knowledge to be deployed at home or support healthcare professionals. Therefore, the digital participation of persons in need of health care professionals lacks a usable interface to use the current technological advances. In this paper, we propose applying algorithms taken from research as web-based microservices following the common approach of a RESTful service to bridge the gap and make algorithms accessible to caregivers and patients without technical knowledge and extended hardware capabilities. We address implementation details, interpretation and realization of guidelines, and privacy concerns using our self-implemented example. Also, we address further usability guidelines and our approach to those.
In many cases continuous monitoring of vital signals is required and low intrusiveness is an important requirement. Incorporating monitoring systems in the hospital or home bed could have benefits for patients and caregivers. The objective of this work is the definition of a measurement protocol and the creation of a data set of measurements using commercial and low-cost prototypes devices to estimate heart rate and breathing rate. The experimental data will be used to compare results achieved by the devices and to develop algorithms for feature extraction of vital signals.
The digital twin concept has been widely known for asset monitoring in the industry for a long time. A clear example is the automotive industry. Recently, there has also been significant interest in the application of digital twins in healthcare, especially in genomics in what is known as precision medicine. This work focuses on another medical speciality where digital twins can be applied, sleep medicine. However, there is still great controversy about the fundamentals that constitute digital twins, such as what this concept is based on and how it can be included in healthcare effectively and sustainably. This article reviews digital twins and their role so far in what is known as personalized medicine. In addition, a series of steps will be exposed for a possible implementation of a digital twin for a patient suffering from sleep disorders. For this, artificial intelligence techniques, clinical data management, and possible solutions for explaining the results derived from artificial intelligence models will be addressed.