Refine
Document Type
- Conference Proceeding (61)
- Article (12)
- Part of a Book (1)
- Other Publications (1)
Keywords
- AAL (2)
- AHI (1)
- Accelerometer sensor (1)
- Accelerometers (1)
- Accessibility (1)
- Activity monitoring (1)
- Algorithm (1)
- Ambient assisted living (1)
- Artefaktkorrektur (1)
- Assisted living (1)
Institute
The importance of sleep for human life is enormous. It affects physical, mental, and psychological health. Therefore, it is vital to recognise sleep disorders in a timely manner in order to be able to initiate therapy. There are two methods for measuring sleep-related parameters - objective and subjective. Whether the substitution of a subjective method for an objective one is possible is investigated in this paper. Such replacement may bring several advantages, including increased comfort for the user. To answer this research question, a study was conducted in which 75 overnight recordings were evaluated. The primary purpose of this study was to compare both ways of measurement for total sleep time and sleep efficiency, which are essential parameters for, e.g., insomnia diagnosis and treatment. The evaluation results demonstrated that, on average, there are 32 minutes of difference between the two measurement methods when total sleep time is analysed. In contrast, on average, both measurement methods differ by 7.5% for sleep efficiency measurement. It should also be noted that people typically overestimate total sleep time and efficiency with the subjective method, where the perceived values are measured.
oday many scientific works are using deep learning algorithms and time series, which can detect physiological events of interest. In sleep medicine, this is particularly relevant in detecting sleep apnea, specifically in detecting obstructive sleep apnea events. Deep learning algorithms with different architectures are used to achieve decent results in accuracy, sensitivity, etc. Although there are models that can reliably determine apnea and hypopnea events, another essential aspect to consider is the explainability of these models, i.e., why a model makes a particular decision. Another critical factor is how these deep learning models determine how severe obstructive sleep apnea is in patients based on the apnea-hypopnea index (AHI). Deep learning models trained by two approaches for AHI determination are exposed in this work. Approaches vary depending on the data format the models are fed: full-time series and window-based time series.
The proposed approach applies current unsupervised clustering approaches in a different dynamic manner. Instead of taking all the data as input and finding clusters among them, the given approach clusters Holter ECG data (long-term electrocardiography data from a holter monitor) on a given interval which enables a dynamic clustering approach (DCA). Therefore advanced clustering techniques based on the well known Dynamic Time Warping algorithm are used. Having clusters e.g. on a daily basis, clusters can be compared by defining cluster shape properties. Doing this gives a measure for variation in unsupervised cluster shapes and may reveal unknown changes in healthiness. Embedding this approach into wearable devices offers advantages over the current techniques. On the one hand users get feedback if their ECG data characteristic changes unforeseeable over time which makes early detection possible. On the other hand cluster properties like biggest or smallest cluster may help a doctor in making diagnoses or observing several patients. Further, on found clusters known processing techniques like stress detection or arrhythmia classification may be applied.
The actual task of electrocardiographic examinations is to increase the reliability of diagnosing the condition of the heart. Within the framework of this task, an important direction is the solution of the inverse problem of electrocardiography, based on the processing of electrocardiographic signals of multichannel cardio leads at known electrode coordinates in these leads (Titomir et al. Noninvasiv electrocardiotopography, 2003), (Macfarlane et al. Comprehensive Electrocardiology, 2nd ed. (Chapter 9), 2011).
Normal breathing during sleep is essential for people’s health and well-being. Therefore, it is crucial to diagnose apnoea events at an early stage and apply appropriate therapy. Detection of sleep apnoea is a central goal of the system design described in this article. To develop a correctly functioning system, it is first necessary to define the requirements outlined in this manuscript clearly. Furthermore, the selection of appropriate technology for the measurement of respiration is of great importance. Therefore, after performing initial literature research, we have analysed in detail three different methods and made a selection of a proper one according to determined requirements. After considering all the advantages and disadvantages of the three approaches, we decided to use the impedance measurement-based one. As a next step, an initial conceptual design of the algorithm for detecting apnoea events was created. As a result, we developed an activity diagram on which the main system components and data flows are visually represented.
Sleep analysis using a Polysomnography system is difficult and expensive. That is why we suggest a non-invasive and unobtrusive measurement. Very few people want the cables or devices attached to their bodies during sleep. The proposed approach is to implement a monitoring system, so the subject is not bothered. As a result, the idea is a non-invasive monitoring system based on detecting pressure distribution. This system should be able to measure the pressure differences that occur during a single heartbeat and during breathing through the mattress. The system consists of two blocks signal acquisition and signal processing. This whole technology should be economical to be affordable enough for every user. As a result, preprocessed data is obtained for further detailed analysis using different filters for heartbeat and respiration detection. In the initial stage of filtration, Butterworth filters are used.
Long-term sleep monitoring can be done primarily in the home environment. Good patient acceptance requires low user and installation barriers. The selection of parameters in this approach is significantly limited compared to a PSG session. The aim is a qualified selection of parameters, which on the one hand allow a sufficiently good classification of sleep phases and on the other hand can be detected by non-invasive methods.
Sleep quality and in general, behavior in bed can be detected using a sleep state analysis. These results can help a subject to regulate sleep and recognize different sleeping disorders. In this work, a sensor grid for pressure and movement detection supporting sleep phase analysis is proposed. In comparison to the leading standard measuring system, which is Polysomnography (PSG), the system proposed in this project is a non-invasive sleep monitoring device. For continuous analysis or home use, the PSG or wearable Actigraphy devices tends to be uncomfortable. Besides this fact, they are also very expensive. The system represented in this work classifies respiration and body movement with only one type of sensor and also in a non-invasive way. The sensor used is a pressure sensor. This sensor is low cost and can be used for commercial proposes. The system was tested by carrying out an experiment that recorded the sleep process of a subject. These recordings showed the potential for classification of breathing rate and body movements. Although previous researches show the use of pressure sensors in recognizing posture and breathing, they have been mostly used by positioning the sensors between the mattress and bedsheet. This project however, shows an innovative way to position the sensors under the mattress.
The purpose of this paper is to examine the effects of perceived stress on traffic and road safety. One of the leading causes of stress among drivers is the feeling of having a lack of control during the driving process. Stress can result in more traffic accidents, an increase in driver errors, and an increase in traffic violations. To study this phenomenon, the Stress Perceived Questionnaire (PSQ) was used to evaluate the perceived stress while driving in a simulation. The study was conducted with participants from Germany, and they were grouped into different categories based on their emotional stability. Each participant was monitored using wearable devices that measured their instantaneous heart rate (HR). The preference for wearable devices was due to their non-intrusive and portable nature. The results of this study provide an overview of how stress can affect traffic and road safety, which can be used for future research or to implement strategies to reduce road accidents and promote traffic safety.
The recovery of our body and brain from fatigue directly depends on the quality of sleep, which can be determined from the results of a sleep study. The classification of sleep stages is the first step of this study and includes the measurement of vital data and their further processing. The non-invasive sleep analysis system is based on a hardware sensor network of 24 pressure sensors providing sleep phase detection. The pressure sensors are connected to an energy-efficient microcontroller via a system-wide bus. A significant difference between this system and other approaches is the innovative way in which the sensors are placed under the mattress. This feature facilitates the continuous use of the system without any noticeable influence on the sleeping person. The system was tested by conducting experiments that recorded the sleep of various healthy young people. Results indicate the potential to capture respiratory rate and body movement.