Refine
Document Type
- Article (9)
- Conference Proceeding (9)
- Preprint (2)
- Book (1)
- Part of a Book (1)
- Report (1)
Keywords
Institute
This study aims to investigate the utilization of Bayesian techniques for the calibration of micro-electro-mechanical system (MEMS) accelerometers. These devices have garnered substantial interest in various practical applications and typically require calibration through error-correcting functions. The parameters of these error-correcting functions are determined during a calibration process. However, due to various sources of noise, these parameters cannot be determined with precision, making it desirable to incorporate uncertainty in the calibration models. Bayesian modeling offers a natural and complete way of reflecting uncertainty by treating the model parameters as variables rather than fixed values. In addition, Bayesian modeling enables the incorporation of prior knowledge, making it an ideal choice for calibration. Nevertheless, it is infrequently used in sensor calibration. This study introduces Bayesian methods for the calibration of MEMS accelerometer data in a straightforward manner using recent advances in probabilistic programming.
Nowadays, the inexpensive memory space promotes an accelerating growth of stored image data. To exploit the data using supervised Machine or Deep Learning, it needs to be labeled. Manually labeling the vast amount of data is time-consuming and expensive, especially if human experts with specific domain knowledge are indispensable. Active learning addresses this shortcoming by querying the user the labels of the most informative images first. One way to obtain the ‘informativeness’ is by using uncertainty sampling as a query strategy, where the system queries those images it is most uncertain about how to classify. In this paper, we present a web-based active learning framework that helps to accelerate the labeling process. After manually labeling some images, the user gets recommendations of further candidates that could potentially be labeled equally (bulk image folder shift). We aim to explore the most efficient ‘uncertainty’ measure to improve the quality of the recommendations such that all images are sorted with a minimum number of user interactions (clicks). We conducted experiments using a manually labeled reference dataset to evaluate different combinations of classifiers and uncertainty measures. The results clearly show the effectiveness of an uncertainty sampling with bulk image shift recommendations (our novel method), which can reduce the number of required clicks to only around 20% compared to manual labeling.
Outcomes with a natural order commonly occur in prediction problems and often the available input data are a mixture of complex data like images and tabular predictors. Deep Learning (DL) models are state-of-the-art for image classification tasks but frequently treat ordinal outcomes as unordered and lack interpretability. In contrast, classical ordinal regression models consider the outcome’s order and yield interpretable predictor effects but are limited to tabular data. We present ordinal neural network transformation models (ontrams), which unite DL with classical ordinal regression approaches. ontrams are a special case of transformation models and trade off flexibility and interpretability by additively decomposing the transformation function into terms for image and tabular data using jointly trained neural networks. The performance of the most flexible ontram is by definition equivalent to a standard multi-class DL model trained with cross-entropy while being faster in training when facing ordinal outcomes. Lastly, we discuss how to interpret model components for both tabular and image data on two publicly available datasets.
Probabilistic Deep Learning
(2020)
Probabilistic Deep Learning is a hands-on guide to the principles that support neural networks. Learn to improve network performance with the right distribution for different data types, and discover Bayesian variants that can state their own uncertainty to increase accuracy. This book provides easy-to-apply code and uses popular frameworks to keep you focused on practical applications.
Rheumatoid arthritis is an autoimmune disease that causes chronic inflammation of synovial joints, often resulting in irreversible structural damage. The activity of the disease is evaluated by clinical examinations, laboratory tests, and patient self-assessment. The long-term course of the disease is assessed with radiographs of hands and feet. The evaluation of the X-ray images performed by trained medical staff requires several minutes per patient. We demonstrate that deep convolutional neural networks can be leveraged for a fully automated, fast, and reproducible scoring of X-ray images of patients with rheumatoid arthritis. A comparison of the predictions of different human experts and our deep learning system shows that there is no significant difference in the performance of human experts and our deep learning model.
Probabilistic Short-Term Low-Voltage Load Forecasting using Bernstein-Polynomial Normalizing Flows
(2021)
The transition to a fully renewable energy grid requires better forecasting of demand at the low-voltage level. However, high fluctuations and increasing electrification cause huge forecast errors with traditional point estimates. Probabilistic load forecasts take future uncertainties into account and thus enables various applications in low-carbon energy systems. We propose an approach for flexible conditional density forecasting of short-term load based on Bernstein-Polynomial Normalizing Flows where a neural network controls the parameters of the flow. In an empirical study with 363 smart meter customers, our density predictions compare favorably against Gaussian and Gaussian mixture densities and also outperform a non-parametric approach based on the pinball loss for 24h-ahead load forecasting for two different neural network architectures.
We propose a novel end-to-end neural network architecture that, once trained, directly outputs a probabilistic clustering of a batch of input examples in one pass. It estimates a distribution over the number of clusters k, and for each 1≤k≤kmax, a distribution over the individual cluster assignment for each data point. The network is trained in advance in a supervised fashion on separate data to learn grouping by any perceptual similarity criterion based on pairwise labels (same/different group). It can then be applied to different data containing different groups. We demonstrate promising performance on high-dimensional data like images (COIL-100) and speech (TIMIT). We call this “learning to cluster” and show its conceptual difference to deep metric learning, semi-supervise clustering and other related approaches while having the advantage of performing learnable clustering fully end-to-end.