Refine
Document Type
- Conference Proceeding (55)
- Article (8)
- Other Publications (3)
- Part of a Book (2)
Has Fulltext
- no (68) (remove)
Keywords
- AAL (3)
- Accelerometers (1)
- Activity monitoring (1)
- Algorithm (1)
- Ambient assisted living (1)
- Apnoe (1)
- Artefaktkorrektur (1)
- Assisted living (1)
- Atmung (2)
- Automotive (1)
Institute
The recovery of our body and brain from fatigue directly depends on the quality of sleep, which can be determined from the results of a sleep study. The classification of sleep stages is the first step of this study and includes the measurement of vital data and their further processing. The non-invasive sleep analysis system is based on a hardware sensor network of 24 pressure sensors providing sleep phase detection. The pressure sensors are connected to an energy-efficient microcontroller via a system-wide bus. A significant difference between this system and other approaches is the innovative way in which the sensors are placed under the mattress. This feature facilitates the continuous use of the system without any noticeable influence on the sleeping person. The system was tested by conducting experiments that recorded the sleep of various healthy young people. Results indicate the potential to capture respiratory rate and body movement.
Globalization has increased the number of road trips and vehicles. The result has been an intensification of traffic accidents, which are becoming one of the most important causes of death worldwide. Traffic accidents are often due to human error, the probability of which increases when the cognitive ability of the driver decreases. Cognitive capacity is closely related to the driver’s mental state, as well as other external factors such as the CO2 concentration inside the vehicle. The objective of this work is to analyze how these elements affect driving. We have conducted an experiment with 50 drivers who have driven for 25 min using a driving simulator. These drivers completed a survey at the start and end of the experiment to obtain information about their mental state. In addition, during the test, their stress level was monitored using biometric sensors and the state of the environment (temperature, humidity and CO2 level) was recorded. The results of the experiment show that the initial level of stress and tiredness of the driver can have a strong impact on stress, driving behavior and fatigue produced by the driving test. Other elements such as sadness and the conditions of the interior of the vehicle also cause impaired driving and affect compliance with traffic regulations.
Cardiovascular diseases are directly or indirectly responsible for up to 38.5% of all deaths in Germany and thus represent the most frequent cause of death. At present, heart diseases are mainly discovered by chance during routine visits to the doctor or when acute symptoms occur. However, there is no practical method to proactively detect diseases or abnormalities of the heart in the daily environment and to take preventive measures for the person concerned. Long-term ECG devices, as currently used by physicians, are simply too expensive, impractical, and not widely available for everyday use. This work aims to develop an ECG device suitable for everyday use that can be worn directly on the body. For this purpose, an already existing hardware platform will be analyzed, and the corresponding potential for improvement will be identified. A precise picture of the existing data quality is obtained by metrological examination, and corresponding requirements are defined. Based on these identified optimization potentials, a new ECG device is developed. The revised ECG device is characterized by a high integration density and combines all components directly on one board except the battery and the ECG electrodes. The compact design allows the device to be attached directly to the chest. An integrated microcontroller allows digital signal processing without the need for an additional computer. Central features of the evaluation are a peak detection for detecting R-peaks and a calculation of the current heart rate based on the RR interval. To ensure the validity of the detected R-peaks, a model of the anatomical conditions is used. Thus, unrealistic RR-intervals can be excluded. The wireless interface allows continuous transmission of the calculated heart rate. Following the development of hardware and software, the results are verified, and appropriate conclusions about the data quality are drawn. As a result, a very compact and wearable ECG device with different wireless technologies, data storage, and evaluation of RR intervals was developed. Some tests yelled runtimes up to 24 hours with wireless Lan activated and streaming.
This paper presents the implementation of deep learning methods for sleep stage detection by using three signals that can be measured in a non-invasive way: heartbeat signal, respiratory signal, and movement signal. Since signals are measurements taken during the time, the problem is seen as time-series data classification. Deep learning methods are chosen to solve the problem are convolutional neural network and long-short term memory network. Input data is structured as a time-series sequence of mentioned signals that represent 30 seconds epoch, which is a standard interval for sleep analysis. The records used belong to the overall 23 subjects, which are divided into two subsets. Records from 18 subjects were used for training the data and from 5 subjects for testing the data. For detecting four sleep stages: REM (Rapid Eye Movement), Wake, Light sleep (Stage 1 and Stage 2), and Deep sleep (Stage 3 and Stage 4), the accuracy of the model is 55%, and F1 score is 44%. For five stages: REM, Stage 1, Stage 2, Deep sleep (Stage 3 and 4), and Wake, the model gives an accuracy of 40% and F1 score of 37%.
This work is a study about a comparison of survey tools and it should help developers in selecting a suited tool for application in an AAL environment. The first step was to identify the basic required functionality of the survey tools used for AAL technologies and to compare these tools by their functionality and assignments. The comparative study was derived from the data obtained, previous literature studies and further technical data. A list of requirements was stated and ordered in terms of relevance to the target application domain. With the help of an integrated assessment method, the calculation of a generalized estimate value was performed and the result is explained. Finally, the planned application of this tool in a running project is explained.
Für die Überwachung des Schlafs zu Hause sind nichtinvasive Methoden besonders gut anwendbar. Die Signale, die häufig überwacht werden, sind Herzfrequenz und Atemfrequenz. Die Ballistokardiographie (BCG)ist eine Technik, bei der die Herzfrequenz aus den mechanischen Schwingungen des Körpers bei jedem Herzzyklus gemessen wird. Kürzlich wurden Übersichtsarbeiten veröffentlicht. Die Untersuchung soll in einem ersten Ansatz bewerten, ob die Herzfrequenz anhand von BCG erkannt werden kann. Die wesentlichen Randbedingungen sind, ob dies gelingt, wenn der Sensor unter der Matratze positioniert wird und kostengünstige Sensoren zum Einsatz kommen.
In diesem Beitrag wird eine Methode des maschinellen Lernens entwickelt, die die Schlafstadienerkennung untersucht. Übliche Methoden der Schlafanalyse basieren auf der Polysomnographie (PSG). Der präsentierte Ansatz basiert auf Signalen, die ausschließlich nicht-invasiv in einer häuslichen Umgebung gemessen werden können. Bewegungs-, Herzschlags- und Atmungssignale können vergleichsweise leicht erfasst werden aber die Erkennung der Schlafstadien ist dadurch erschwert. Die Signale werden als Zeitreihenfolge strukturiert und in Epochen überführt. Die Leistungsfähigkeit von maschinellem Lernen wird der Polysomnographie gegenübergestellt und bewertet.
Die Schlafapnoe ist eine häufig auftretende Schlafstörung,
die unterschiedliche Auswirkungen auf unseren Alltag hat; so wurde z. B.
über eine Tagesschläfrigkeit von etwa 25 % der Patienten mit obstruktiver
Schlafapnoe (OSA) berichtet. Ziel dieser Arbeit ist die Entwicklung eines
Systems, das eine nichtinvasive Erkennung der Schlafapnoe in häuslicher
Umgebung ermöglichen soll.
The evaluation of the effectiveness of different machine learning algorithms on a publicly available database of signals derived from wearable devices is presented with the goal of optimizing human activity recognition and classification. Among the wide number of body signals we choose a couple of signals, namely photoplethysmographic (optically detected subcutaneous blood volume) and tri-axis acceleration signals that are easy to be simultaneously acquired using commercial widespread devices (e.g. smartwatches) as well as custom wearable wireless devices designed for sport, healthcare, or clinical purposes. To this end, two widely used algorithms (decision tree and k-nearest neighbor) were tested, and their performance were compared to two new recent algorithms (particle Bernstein and a Monte Carlo-based regression) both in terms of accuracy and processing time. A data preprocessing phase was also considered to improve the performance of the machine learning procedures, in order to reduce the problem size and a detailed analysis of the compression strategy and results is also presented.
In previous studies, we used a method for detecting stress that was based exclusively on heart rate and ECG for differentiation between such situations as mental stress, physical activity, relaxation, and rest. As a response of the heart to these situations, we observed different behavior in the Root Mean Square of the Successive differences heartbeats (RMSSD). This study aims to analyze Virtual Reality via a virtual reality headset as an effective stressor for future works. The value of the Root Mean Square of the Successive Differences is an important marker for the parasympathetic effector on the heart and can provide information about stress. For these measurements, the RR interval was collected using a breast belt. In these studies, we can observe the Root Mean Square of the successive differences heartbeats. Additional sensors for the analysis were not used. We conducted experiments with ten subjects that had to drive a simulator for 25 minutes using monitors and 25 minutes using virtual reality headset. Before starting and after finishing each simulation, the subjects had to complete a survey in which they had to describe their mental state. The experiment results show that driving using virtual reality headset has some influence on the heart rate and RMSSD, but it does not significantly increase the stress of driving.