In many industrial applications a workpiece is continuously fed through a heating zone in order to reach a desired temperature to obtain specific material properties. Many examples of such distributed parameter systems exist in heavy industry and also in furniture production such processes can be found. In this paper, a real-time capable model for a heating process with application to industrial furniture production is modeled. As the model is intended to be used in a Model Predictive Control (MPC) application, the main focus is to achieve minimum computational runtime while maintaining a sufficient amount of accuracy. Thus, the governing Partial Differential Equation (PDE) is discretized using finite differences on a grid, specifically tailored to this application. The grid is optimized to yield acceptable accuracy with a minimum number of grid nodes such that a relatively low order model is obtained. Subsequently, an explicit Runge-Kutta ODE (Ordinary Differential Equation) solver of fourth order is compared to the Crank-Nicolson integration scheme presented in Weiss et al. (2022) in terms of runtime and accuracy. Finally, the unknown thermal parameters of the process are estimated using real-world measurement data that was obtained from an experimental setup. The final model yields acceptable accuracy while at the same time shows promising computation time, which enables its use in an MPC controller.
This paper describes an early lumping approach for generating a mathematical model of the heating process of a moving dual-layer substrate. The heat is supplied by convection and nonlinearly distributed over the whole considered spatial extend of the substrate. Using CFD simulations as a reference, two different modelling approaches have been investigated in order to achieve the most suitable model type. It is shown that due to the possibility of using the transition matrix for time discretization, an equivalent circuit model achieves superior results when compared to the Crank-Nicolson method. In order to maintain a constant sampling time for the in-visioned-control strategies, the effect of variable speed is transformed into a system description, where the state vector has constant length but a variable number of non-zero entries. The handling of the variable transport speed during the heating process is considered as the main contribution of this work. The result is a model, suitable for being used in future control strategies.
This paper presents a modeling approach of an industrial heating process where a stripe-shaped workpiece is heated up to a specific temperature by applying hot air through a nozzle. The workpiece is moving through the heating zone and is considered to be of infinite length. The speed of the substrate is varying over time. The derived model is supposed to be computationally cheap to enable its use in a model-based control setting. We start by formulating the governing PDE and the corresponding boundary conditions. The PDE is then discretized on a spatial grid using finite differences and two different integration schemes, explicit and implicit, are derived. The two models are evaluated in terms of computational effort and accuracy. It turns out that the implicit approach is favorable for the regarded process. We optimize the grid of the model to achieve a low number of grid nodes while maintaining a sufficient amount of accuracy. Finally, the thermodynamical parameters are optimized in order to fit the model's output to real-world data that was obtained by experiments.
This paper describes the development of a control system for an industrial heating application. In this process a moving substrate is passing through a heating zone with variable speed. Heat is applied by hot air to the substrate with the air flow rate being the manipulated variable. The aim is to control the substrate’s temperature at a specific location after passing the heating zone. First, a model is derived for a point attached to the moving substrate. This is modified to reflect the temperature of the moving substrate at the specified location. In order to regulate the temperature a nonlinear model predictive control approach is applied using an implicit Euler scheme to integrate the model and an augmented gradient based optimization approach. The performance of the controller has been validated both by simulations and experiments on the physical plant. The respective results are presented in this paper.
Analysing observability is an important step in the
process of designing state feedback controllers. While for linear
systems observability has been widely studied and easy-to-check
necessary and sufficient conditions are available, for nonlinear
systems, such a general recipe does not exist and different classes
of systems require different techniques. In this paper, we analyse
observability for an industrial heating process where a stripe-
shaped plastic workpiece is moving through a heating zone where
it is heated up to a specific temperature by applying hot air to its
surface through a nozzle. A modeling approach for this process
is briefly presented, yielding a nonlinear Ordinary Differential
Equation model. Sensitivity-based observability analysis is used
to identify unobservable states and make suggestions for addi-
tional sensor locations. In practice, however, it is not possible
to place additional sensors, so the available measurements are
used to implement a simple open-loop state estimator with
offset compensation and numerical and experimental results are
presented.