Besides energy efficiency, product quality is gaining importance in the design of drying processes for sensitive biological foodstuffs. The influence of drying parameters on the drying kinetics of apples has been extensively investigated; the information about effects on product quality available in literature however, is often contradictory. Furthermore quality changes obtained applying different drying parameters are usually hard to compare. As most quality changes can be expressed as zero, first or second order reactions and mainly depend on drying air temperature and drying time, it would be desirable to cross-check the results in function thereof. This paper introduces a method of quality determination using a new reference value, the cumulated thermal load. It is defined as the time integral of the product surface temperature and improves the comparability of quality changes obtained by different experimental settings in drying of apples and tomatoes. It could be shown that quality parameters like color changes and shrinkage during apple drying and the content of temperature sensitive acids in tomatoes vary linearly with the integral of product temperature over time.
Post harvest technology
(2015)
Untersuchung und Darstellung der Qualitätsveränderung von Agrarprodukten während der Trocknung
(2019)
Das Ziel der Arbeit war es optimale Trocknungsprozesse für verschiedene Agrarprodukte zu finden. Dazu wurden die Qualitätskriterien frischer und getrockneter Agrarprodukte analysiert und die Veränderungen durch die unterschiedlichen Trocknungsparameter, wie Luftgeschwindigkeit, Taupunkttemperatur, Trocknungstemperatur und –zeit dargestellt. In einer Literaturrecherche wurden sowohl die Faktoren für die Nachernteverluste und deren Höhe in Industrie- sowie Schwellen- und Entwicklungsländer untersucht. Zudem sind die Agrarprodukte und deren qualitätsbestimmenden Inhaltsstoffe vorgestellt. Auch die Extraktions- sowie die Analyse-Methoden werden aufgezeigt und erklärt. Dabei handelt es sich um die Hochleistungsflüssigkeit- und die Ionenausschlusschromatographie, aber auch um die UV/Vis-Spektroskopie und die Polarimetrie. Des Weiteren wurden während den Trocknungsprozessen mit der integrierten Kamera des Trockners in definierten Zeitabständen Bilder aufgenommen und diese über eine speziell entwickelte Software im Hinblick auf die Farbveränderung und die Schrumpfung der Agrarprodukte untersucht. Die Erstellung und Überprüfung der Versuchsergebnisse fand mittels Statistik-Software statt. Es wurden neue Diagramme, sogenannte Schädigungsdiagramme, eingeführt. Dabei handelt es sich um Diagramme, mit deren Hilfe die Identifizierung optimaler Trocknungsprozesse möglich ist. Für Chilis erwies sich eine Trocknungstemperatur von ~ 60 °C, für Kartoffeln von ~ 64 °C bis 74 °C, für Ananas von ~ 43 °C und Mangos von ~ 60 °C als optimal. Auch Taupunkttemperaturen von ~ <12 °C / >27 °C für Chilis, ~ 30 °C für Kartoffeln, ~ 14 °C für Ananas und ~ 20 °C Mangos waren optimal. Die Luftgeschwindigkeit wurde mit rund 1,2 m/s (Kartoffeln: ~ 1.2 m/s; Ananas: ~ 1.2 m/s und Mangos: ~ 0.9 m/s) als optimal befunden. Die Ergebnisse zeigten, dass bei jedem der vier Agrarprodukte die Trocknungstemperatur den größten Effekt auf die Reduzierung der qualitätsbestimmenden Eigenschaften hatte. Bei-spielsweise wurden die Ascorbinsäure, der Gesamtzucker-Gehalt sowie die organischen Säuren mit zunehmender Trocknungstemperatur stärker abgebaut. In Zukunft sollte neben den optimalen Trocknungsbedingungen auch beachtet werden, dass die Größe, Form, und Beschaffenheit der Proben einen entscheidenden Einfluss auf die stationären Trocknungsprozesse haben. Weiter ist es denkbar, instationäre Trocknungsprozesse zum Einsatz zu bringen. Dabei werden zuerst bei hohen Temperaturen die qualitätsreduzierenden Enzyme inaktiviert und anschließend bei geringen Temperatur und damit geringerer thermischer Belastung getrocknet. Weiter sollte darauf geachtet werden, dass Produkte nicht übertrocknen, so dass in Zukunft nur bis knapp unter den maximalen Restfeuchte-Gehalt und nicht wie in dieser Arbeit bis zur Gewichtskonstanz getrocknet wird.
When designing drying processes for sensitive biological foodstuffs like fruit or vegetables, energy and time efficiency as well as product quality are gaining more and more importance. These all are greatly influenced by the different drying parameters (e.g. air temperature, air velocity and dew point temperature) in the process. In sterilization of food products the cooking value is widely used as a cross-link between these parameters. In a similar way, the so-called cumulated thermal load (CTL) was introduced for drying processes. This was possible because most quality changes mainly depend on drying air temperature and drying time. In a first approach, the CTL was therefore defined as the time integral of the surface temperature of agricultural products. When conducting experiments with mangoes and pineapples, however, it was found that the CTL as it was used had to be adjusted to a more practical form. So the definition of the CTL was improved and the behaviour of the adjusted CTL (CTLad) was investigated in the drying of pineapples and mangoes. On the basis of these experiments and the work that had been done on the cooking value, it was found, that more optimization on the CTLad had to be done to be able to compare a great variety of different products as well as different quality parameters.