Refine
Document Type
- Conference Proceeding (88)
- Article (15)
- Other Publications (3)
- Part of a Book (2)
- Report (1)
Keywords
- AAL (3)
- AHI (1)
- Accelerometer sensor (1)
- Accelerometers (1)
- Accessibility (1)
- Activity monitoring (1)
- Algorithm (1)
- Ambient assisted living (2)
- Apnoe (1)
- Artefaktkorrektur (1)
Institute
Present demographic change and a growing population of elderly people leads to new medical needs. Meeting these with state of the art technology is as a consequence a rapidly growing market. So this work is aimed at taking modern concepts of mobile and sensor technology and putting them in a medical context. By measuring a user’s vital signs on sensors which are processed on a Android smartphone, the target system is able to determine the current health state of the user and to visualize gathered information. The system also includes a weather forecasting functionality, which alerts the user on possibly dangerous future meteorological events. All information are collected centrally and distributed to users based on their location. Further, the system can correlate the client-side measurement of vital signs with a server-side weather history. This enables personalized forecasting for each user individually. Finally, a portable and affordable application was developed that continuously monitors the health status by many vital sensors, all united on a common smartphone.
Das häusliche Umfeld kann vor allem für langfristiges Schlafmonitoring verwendet werden. Gute Patientenakzeptanz erfordert niedrige Nutzer- und Installationsbarrieren. Für die Installation zu Hause sind klassische PSG-Systeme aufgrund von ihrer Komplexität wenig passend. Ziel der Entwicklung ist die qualifizierte Erhebung von Parametern, die einerseits eine hinreichend gute Klassifikation von Schlafphasen erlauben und die andererseits durch nicht-invasive Methoden erfasst werden können.
Basierend auf einer Literaturstudie und der Maßgabe nicht-invasive Methoden zu nutzen, wurden folgende Parameter ausgewählt: Körperbewegung, Atmung und Herzschlag. Diese Parameter können nicht-invasiv durch Matratzendrucksensoren erfasst werden. Die Sensorknoten sind als ein Netz von Drucksensoren implementiert, die mit einem leistungsarmen und performanten Mikrocontroller verbunden sind. Alle Knoten sind über einen systemweiten Bus mit Adressarbitrierung verbunden. Der eingebettete Prozessor ist der Mesh-Netzwerk-Endpunkt, der die Netzwerkkonfiguration, Speicherung und Vorverarbeitung der Daten, externen Datenzugriff und Visualisierung ermöglicht.
Das System wurde getestet, indem Experimente durchgeführt wurden, die den Schlaf verschiedener gesunder junger Personen aufzeichneten. Die erhaltenen Ergebnisse bestätigen die Fähigkeit des Systems, Atemfrequenz und Körperbewegung zu erfassen. Ein wesentlicher Unterschied dieses Systems im Vergleich zu anderen Ansätzen ist die innovative Art, die Sensoren unter der Matratze zu platzieren. Diese Eigenschaft erleichtert die kontinuierliche Nutzung des Systems ohne Einfluss auf den gemeinsamen Schlafprozess.
Um Schlafverhalten langfristig zu untersuchen, wird ein Hardwaresystem mit niedrigen Installationsbarrieren für den Einsatz im häuslichen Umfeld. Erste Ergebnisse weisen auf das Potenzial hin, außer Körperbewegung und Atemfrequenz, auch Herzfrequenz erfassen zu können. Die Werte können weiter verbessert werden, wenn die Sensorabfragefrequenz erhöht wird. Nach der Weiterentwicklung des Systems, soll es mit dem Softwarealgorithmus für die Schlafphasenerkennung verbunden werden.
The importance of sleep for human life is enormous. It affects physical, mental, and psychological health. Therefore, it is vital to recognise sleep disorders in a timely manner in order to be able to initiate therapy. There are two methods for measuring sleep-related parameters - objective and subjective. Whether the substitution of a subjective method for an objective one is possible is investigated in this paper. Such replacement may bring several advantages, including increased comfort for the user. To answer this research question, a study was conducted in which 75 overnight recordings were evaluated. The primary purpose of this study was to compare both ways of measurement for total sleep time and sleep efficiency, which are essential parameters for, e.g., insomnia diagnosis and treatment. The evaluation results demonstrated that, on average, there are 32 minutes of difference between the two measurement methods when total sleep time is analysed. In contrast, on average, both measurement methods differ by 7.5% for sleep efficiency measurement. It should also be noted that people typically overestimate total sleep time and efficiency with the subjective method, where the perceived values are measured.
oday many scientific works are using deep learning algorithms and time series, which can detect physiological events of interest. In sleep medicine, this is particularly relevant in detecting sleep apnea, specifically in detecting obstructive sleep apnea events. Deep learning algorithms with different architectures are used to achieve decent results in accuracy, sensitivity, etc. Although there are models that can reliably determine apnea and hypopnea events, another essential aspect to consider is the explainability of these models, i.e., why a model makes a particular decision. Another critical factor is how these deep learning models determine how severe obstructive sleep apnea is in patients based on the apnea-hypopnea index (AHI). Deep learning models trained by two approaches for AHI determination are exposed in this work. Approaches vary depending on the data format the models are fed: full-time series and window-based time series.
The proposed approach applies current unsupervised clustering approaches in a different dynamic manner. Instead of taking all the data as input and finding clusters among them, the given approach clusters Holter ECG data (long-term electrocardiography data from a holter monitor) on a given interval which enables a dynamic clustering approach (DCA). Therefore advanced clustering techniques based on the well known Dynamic Time Warping algorithm are used. Having clusters e.g. on a daily basis, clusters can be compared by defining cluster shape properties. Doing this gives a measure for variation in unsupervised cluster shapes and may reveal unknown changes in healthiness. Embedding this approach into wearable devices offers advantages over the current techniques. On the one hand users get feedback if their ECG data characteristic changes unforeseeable over time which makes early detection possible. On the other hand cluster properties like biggest or smallest cluster may help a doctor in making diagnoses or observing several patients. Further, on found clusters known processing techniques like stress detection or arrhythmia classification may be applied.
The actual task of electrocardiographic examinations is to increase the reliability of diagnosing the condition of the heart. Within the framework of this task, an important direction is the solution of the inverse problem of electrocardiography, based on the processing of electrocardiographic signals of multichannel cardio leads at known electrode coordinates in these leads (Titomir et al. Noninvasiv electrocardiotopography, 2003), (Macfarlane et al. Comprehensive Electrocardiology, 2nd ed. (Chapter 9), 2011).
Normal breathing during sleep is essential for people’s health and well-being. Therefore, it is crucial to diagnose apnoea events at an early stage and apply appropriate therapy. Detection of sleep apnoea is a central goal of the system design described in this article. To develop a correctly functioning system, it is first necessary to define the requirements outlined in this manuscript clearly. Furthermore, the selection of appropriate technology for the measurement of respiration is of great importance. Therefore, after performing initial literature research, we have analysed in detail three different methods and made a selection of a proper one according to determined requirements. After considering all the advantages and disadvantages of the three approaches, we decided to use the impedance measurement-based one. As a next step, an initial conceptual design of the algorithm for detecting apnoea events was created. As a result, we developed an activity diagram on which the main system components and data flows are visually represented.
Sleep analysis using a Polysomnography system is difficult and expensive. That is why we suggest a non-invasive and unobtrusive measurement. Very few people want the cables or devices attached to their bodies during sleep. The proposed approach is to implement a monitoring system, so the subject is not bothered. As a result, the idea is a non-invasive monitoring system based on detecting pressure distribution. This system should be able to measure the pressure differences that occur during a single heartbeat and during breathing through the mattress. The system consists of two blocks signal acquisition and signal processing. This whole technology should be economical to be affordable enough for every user. As a result, preprocessed data is obtained for further detailed analysis using different filters for heartbeat and respiration detection. In the initial stage of filtration, Butterworth filters are used.
The overall goal of this work is to detect and analyze a person's movement, breathing and heart rate during sleep in a common bed overnight without any additional physical contact. The measurement is performed with the help of
sensors placed between the mattress and the frame. A two-stage pattern classification algorithm based has been implemented that applies statistics analysis to recognize the position of patients. The system is implemented in a sensors-network, hosting several nodes and communication end-points to support quick and efficient classification. The overall tests show convincing results for the position recognition and a reasonable overlap in matching.
Long-term sleep monitoring can be done primarily in the home environment. Good patient acceptance requires low user and installation barriers. The selection of parameters in this approach is significantly limited compared to a PSG session. The aim is a qualified selection of parameters, which on the one hand allow a sufficiently good classification of sleep phases and on the other hand can be detected by non-invasive methods.