Refine
Year of publication
Document Type
- Conference Proceeding (15)
- Article (10)
Language
- English (25)
Keywords
- Algebraic codes (1)
- Antenna arrays (1)
- Block codes (1)
- Channel estimation (2)
- Channel fading (1)
- Coded modulation (1)
- Codes over Gaussian integers (1)
- Concatenated codes (1)
- Decoding (2)
- Digital modulation (1)
Institute
Codes over quotient rings of Lipschitz integers have recently attracted some attention. This work investigates the performance of Lipschitz integer constellations for transmission over the AWGN channel by means of the constellation figure of merit. A construction of sets of Lipschitz integers that leads to a better constellation figure of merit compared to ordinary Lipschitz integer constellations is presented. In particular, it is demonstrated that the concept of set partitioning can be applied to quotient rings of Lipschitz integers where the number of elements is not a prime number. It is shown that it is always possible to partition such quotient rings into additive subgroups in a manner that the minimum Euclidean distance of each subgroup is strictly larger than in the original set. The resulting signal constellations have a better performance for transmission over an additive white Gaussian noise channel compared to Gaussian integer constellations and to ordinary Lipschitz integer constellations. In addition, we present multilevel code constructions for the new signal constellations.
Codes over quotient rings of Lipschitz integers have recently attracted some attention. This work investigates the performance of Lipschitz integer constellations for transmission over the AWGN channel by means of the constellation figure of merit. A construction of sets of Lipschitz integers is presented that leads to a better constellation figure of merit compared to ordinary Lipschitz integer constellations. In particular, it is demonstrated that the concept of set partitioning can be applied to quotient rings of Lipschitz integers where the number of elements is not a prime number. It is shown that it is always possible to partition such quotient rings into additive subgroups in a manner that the minimum Euclidean distance of each subgroup is strictly larger than in the original set. The resulting signal constellations have a better performance for transmission over an additive white Gaussian noise channel compared to Gaussian integer constellations and to ordinary Lipschitz integer constellations.
Four-Dimensional Hurwitz Signal Constellations, Set Partitioning, Detection, and Multilevel Coding
(2021)
The Hurwitz lattice provides the densest four-dimensional packing. This fact has motivated research on four-dimensional Hurwitz signal constellations for optical and wireless communications. This work presents a new algebraic construction of finite sets of Hurwitz integers that is inherently accompanied by a respective modulo operation. These signal constellations are investigated for transmission over the additive white Gaussian noise (AWGN) channel. It is shown that these signal constellations have a better constellation figure of merit and hence a better asymptotic performance over an AWGN channel when compared with conventional signal constellations with algebraic structure, e.g., two-dimensional Gaussian-integer constellations or four-dimensional Lipschitz-integer constellations. We introduce two concepts for set partitioning of the Hurwitz integers. The first method is useful to reduce the computational complexity of the symbol detection. This suboptimum detection approach achieves near-maximum-likelihood performance. In the second case, the partitioning exploits the algebraic structure of the Hurwitz signal constellations. We partition the Hurwitz integers into additive subgroups in a manner that the minimum Euclidean distance of each subgroup is larger than in the original set. This enables multilevel code constructions for the new signal constellations.
Spatial modulation is a low-complexity multipleinput/ multipleoutput transmission technique. The recently proposed spatial permutation modulation (SPM) extends the concept of spatial modulation. It is a coding approach, where the symbols are dispersed in space and time. In the original proposal of SPM, short repetition codes and permutation codes were used to construct a space-time code. In this paper, we propose a similar coding scheme that combines permutation codes with codes over Gaussian integers. Short codes over Gaussian integers have good distance properties. Furthermore, the code alphabet can directly be applied as signal constellation, hence no mapping is required. Simulation results demonstrate that the proposed coding approach outperforms SPM with repetition codes.
Multi-dimensional spatial modulation is a multipleinput/ multiple-output wireless transmission technique, that uses only a few active antennas simultaneously. The computational complexity of the optimal maximum-likelihood (ML) detector at the receiver increases rapidly as more transmit antennas or larger modulation orders are employed. ML detection may be infeasible for higher bit rates. Many suboptimal detection algorithms for spatial modulation use two-stage detection schemes where the set of active antennas is detected in the first stage and the transmitted symbols in the second stage. Typically, these detection schemes use the ML strategy for the symbol detection. In this work, we consider a suboptimal detection algorithm for the second detection stage. This approach combines equalization and list decoding. We propose an algorithm for multi-dimensional signal constellations with a reduced search space in the second detection stage through set partitioning. In particular, we derive a set partitioning from the properties of Hurwitz integers. Simulation results demonstrate that the new algorithm achieves near-ML performance. It significantly reduces the complexity when compared with conventional two-stage detection schemes. Multi-dimensional constellations in combination with suboptimal detection can even outperform conventional signal constellations in combination with ML detection.
Large persistent memory is crucial for many applications in embedded systems and automotive computing like AI databases, ADAS, and cutting-edge infotainment systems. Such applications require reliable NAND flash memories made for harsh automotive conditions. However, due to high memory densities and production tolerances, the error probability of NAND flash memories has risen. As the number of program/erase cycles and the data retention times increase, non-volatile NAND flash memories' performance and dependability suffer. The read reference voltages of the flash cells vary due to these aging processes. In this work, we consider the issue of reference voltage adaption. The considered estimation procedure uses shallow neural networks to estimate the read reference voltages for different life-cycle conditions with the help of histogram measurements. We demonstrate that the training data for the neural networks can be enhanced by using shifted histograms, i.e., a training of the neural networks is possible based on a few measurements of some extreme points used as training data. The trained neural networks generalize well for other life-cycle conditions.
Automotive computing applications like AI databases, ADAS, and advanced infotainment systems have a huge need for persistent memory. This trend requires NAND flash memories designed for extreme automotive environments. However, the error probability of NAND flash memories has increased in recent years due to higher memory density and production tolerances. Hence, strong error correction coding is needed to meet automotive storage requirements. Many errors can be corrected by soft decoding algorithms. However, soft decoding is very resource-intensive and should be avoided when possible. NAND flash memories are organized in pages, and the error correction codes are usually encoded page-wise to reduce the latency of random reads. This page-wise encoding does not reach the maximum achievable capacity. Reading soft information increases the channel capacity but at the cost of higher latency and power consumption. In this work, we consider cell-wise encoding, which also increases the capacity compared to page-wise encoding. We analyze the cell-wise processing of data in triple-level cell (TLC) NAND flash and show the performance gain when using Low-Density Parity-Check (LDPC) codes. In addition, we investigate a coding approach with page-wise encoding and cell-wise reading.
In this letter, we present an approach to building a new generalized multistream spatial modulation system (GMSM), where the information is conveyed by the two active antennas with signal indices and using all possible active antenna combinations. The signal constellations associated with these antennas may have different sizes. In addition, four-dimensional hybrid frequency-phase modulated signals are utilized in GMSM. Examples of GMSM systems are given and computer simulation results are presented for transmission over Rayleigh and deep Nakagami- m flat-fading channels when maximum-likelihood detection is used. The presented results indicate a significant improvement of characteristics compared to the best-known similar systems.
This paper proposes a soft input decoding algorithm and a decoder architecture for generalized concatenated (GC) codes. The GC codes are constructed from inner nested binary Bose-Chaudhuri-Hocquenghem (BCH) codes and outer Reed-Solomon codes. In order to enable soft input decoding for the inner BCH block codes, a sequential stack decoding algorithm is used. Ordinary stack decoding of binary block codes requires the complete trellis of the code. In this paper, a representation of the block codes based on the trellises of supercodes is proposed in order to reduce the memory requirements for the representation of the BCH codes. This enables an efficient hardware implementation. The results for the decoding performance of the overall GC code are presented. Furthermore, a hardware architecture of the GC decoder is proposed. The proposed decoder is well suited for applications that require very low residual error rates.
This letter introduces signal constellations based on multiplicative groups of Eisenstein integers, i.e., hexagonal lattices. These sets of Eisenstein integers are proposed as signal constellations for generalized spatial modulation. The algebraic properties of the new constellations are investigated and a set partitioning technique is developed. This technique can be used to design coded modulation schemes over hexagonal lattices.