Refine
Year of publication
Document Type
- Conference Proceeding (13)
- Article (10)
Language
- English (23)
Keywords
- Antenna arrays (1)
- Block codes (1)
- Channel estimation (2)
- Channel fading (1)
- Coded modulation (1)
- Codes over Gaussian integers (1)
- Concatenated codes (1)
- Decoding (2)
- Digital modulation (1)
- Error correction codes (1)
Institute
This paper proposes a soft input decoding algorithm and a decoder architecture for generalized concatenated (GC) codes. The GC codes are constructed from inner nested binary Bose-Chaudhuri-Hocquenghem (BCH) codes and outer Reed-Solomon codes. In order to enable soft input decoding for the inner BCH block codes, a sequential stack decoding algorithm is used. Ordinary stack decoding of binary block codes requires the complete trellis of the code. In this paper, a representation of the block codes based on the trellises of supercodes is proposed in order to reduce the memory requirements for the representation of the BCH codes. This enables an efficient hardware implementation. The results for the decoding performance of the overall GC code are presented. Furthermore, a hardware architecture of the GC decoder is proposed. The proposed decoder is well suited for applications that require very low residual error rates.
This letter introduces signal constellations based on multiplicative groups of Eisenstein integers, i.e., hexagonal lattices. These sets of Eisenstein integers are proposed as signal constellations for generalized spatial modulation. The algebraic properties of the new constellations are investigated and a set partitioning technique is developed. This technique can be used to design coded modulation schemes over hexagonal lattices.
Codes over quotient rings of Lipschitz integers have recently attracted some attention. This work investigates the performance of Lipschitz integer constellations for transmission over the AWGN channel by means of the constellation figure of merit. A construction of sets of Lipschitz integers that leads to a better constellation figure of merit compared to ordinary Lipschitz integer constellations is presented. In particular, it is demonstrated that the concept of set partitioning can be applied to quotient rings of Lipschitz integers where the number of elements is not a prime number. It is shown that it is always possible to partition such quotient rings into additive subgroups in a manner that the minimum Euclidean distance of each subgroup is strictly larger than in the original set. The resulting signal constellations have a better performance for transmission over an additive white Gaussian noise channel compared to Gaussian integer constellations and to ordinary Lipschitz integer constellations. In addition, we present multilevel code constructions for the new signal constellations.
Codes over quotient rings of Lipschitz integers have recently attracted some attention. This work investigates the performance of Lipschitz integer constellations for transmission over the AWGN channel by means of the constellation figure of merit. A construction of sets of Lipschitz integers is presented that leads to a better constellation figure of merit compared to ordinary Lipschitz integer constellations. In particular, it is demonstrated that the concept of set partitioning can be applied to quotient rings of Lipschitz integers where the number of elements is not a prime number. It is shown that it is always possible to partition such quotient rings into additive subgroups in a manner that the minimum Euclidean distance of each subgroup is strictly larger than in the original set. The resulting signal constellations have a better performance for transmission over an additive white Gaussian noise channel compared to Gaussian integer constellations and to ordinary Lipschitz integer constellations.
Error correction coding based on soft-input decoding can significantly improve the reliability of non-volatile flash memories. This work proposes a soft-input decoder for generalized concatenated (GC) codes. GC codes are well suited for error correction in flash memories for high reliability data storage. We propose GC codes constructed from inner extended binary Bose-Chaudhuri-Hocquenghem (BCH) codes and outer Reed-Solomon codes. The extended BCH codes enable an efficient hard-input decoding. Furthermore, a low-complexity soft-input decoding method is proposed. This bit-flipping decoder uses a fixed number of test patterns and an algebraic decoder for soft-decoding. An acceptance criterion for the final candidate codeword is proposed. Combined with error and erasure decoding of the outer Reed-Solomon codes, this acceptance criterion can improve the decoding performance and reduce the decoding complexity. The presented simulation results show that the proposed bit-flipping decoder in combination with outer error and erasure decoding can outperform maximum likelihood decoding of the inner codes.
The introduction of multiple-level cell (MLC) and triple-level cell (TLC) technologies reduced the reliability of flash memories significantly compared with single-level cell flash. With MLC and TLC flash cells, the error probability varies for the different states. Hence, asymmetric models are required to characterize the flash channel, e.g., the binary asymmetric channel (BAC). This contribution presents a combined channel and source coding approach improving the reliability of MLC and TLC flash memories. With flash memories data compression has to be performed on block level considering short-data blocks. We present a coding scheme suitable for blocks of 1 kB of data. The objective of the data compression algorithm is to reduce the amount of user data such that the redundancy of the error correction coding can be increased in order to improve the reliability of the data storage system. Moreover, data compression can be utilized to exploit the asymmetry of the channel to reduce the error probability. With redundant data, the proposed combined coding scheme results in a significant improvement of the program/erase cycling endurance and the data retention time of flash memories.
Generalized concatenated (GC) codes with soft-input decoding were recently proposed for error correction in flash memories. This work proposes a soft-input decoder for GC codes that is based on a low-complexity bit-flipping procedure. This bit-flipping decoder uses a fixed number of test patterns and an algebraic decoder for soft-input decoding. An acceptance criterion for the final candidate codeword is proposed. Combined with error and erasure decoding of the outer Reed-Solomon codes, this bit-flipping decoder can improve the decoding performance and reduce the decoding complexity compared to the previously proposed sequential decoding. The bit-flipping decoder achieves a decoding performance similar to a maximum likelihood decoder for the inner codes.
This work proposes a construction for low-density parity-check (LDPC) codes over finite Gaussian integer fields. Furthermore, a new channel model for codes over Gaussian integers is introduced and its channel capacity is derived. This channel can be considered as a first order approximation of the additive white Gaussian noise channel with hard decision detection where only errors to nearest neighbors in the signal constellation are considered. For this channel, the proposed LDPC codes can be decoded with a simple non-probabilistic iterative decoding algorithm similar to Gallager's decoding algorithm A.
Error correction coding (ECC) for optical communication and persistent storage systems require high rate codes that enable high data throughput and low residual errors. Recently, different concatenated coding schemes were proposed that are based on binary Bose-Chaudhuri-Hocquenghem (BCH) codes that have low error correcting capabilities. Commonly, hardware implementations for BCH decoding are based on the Berlekamp-Massey algorithm (BMA). However, for single, double, and triple error correcting BCH codes, Peterson's algorithm can be more efficient than the BMA. The known hardware architectures of Peterson's algorithm require Galois field inversion. This inversion dominates the hardware complexity and limits the decoding speed. This work proposes an inversion-less version of Peterson's algorithm. Moreover, a decoding architecture is presented that is faster than decoders that employ inversion or the fully parallel BMA at a comparable circuit size.
The computational complexity of the optimal maximum likelihood (ML) detector for spatial modulation increases rapidly as more transmit antennas or larger modulation orders are employed. Hence, ML detection may be infeasible for higher bit rates. This work proposes an improved suboptimal detection algorithm based on the Gaussian approximation method. It is demonstrated that the new method is closely related to the previously published signal vector based detection and the modified maximum ratio combiner, but can improve the detection performance compared to these methods. Furthermore, the performance of different signal constellations with suboptimal detection is investigated. Simulation results indicate that the performance loss compared to ML detection depends heavily on the signal constellation, where the recently proposed Eisenstein integer constellations are beneficial compared to classical QAM or PSK constellations.