Refine
Year of publication
Document Type
- Conference Proceeding (15)
- Article (10)
Language
- English (25)
Keywords
- Algebraic codes (1)
- Antenna arrays (1)
- Block codes (1)
- Channel estimation (2)
- Channel fading (1)
- Coded modulation (1)
- Codes over Gaussian integers (1)
- Concatenated codes (1)
- Decoding (2)
- Digital modulation (1)
Institute
The computational complexity of the optimal maximum likelihood (ML) detector for spatial modulation increases rapidly as more transmit antennas or larger modulation orders are employed. Hence, ML detection may be infeasible for higher bit rates. This work proposes an improved suboptimal detection algorithm based on the Gaussian approximation method. It is demonstrated that the new method is closely related to the previously published signal vector based detection and the modified maximum ratio combiner, but can improve the detection performance compared to these methods. Furthermore, the performance of different signal constellations with suboptimal detection is investigated. Simulation results indicate that the performance loss compared to ML detection depends heavily on the signal constellation, where the recently proposed Eisenstein integer constellations are beneficial compared to classical QAM or PSK constellations.
Codes over quotient rings of Lipschitz integers have recently attracted some attention. This work investigates the performance of Lipschitz integer constellations for transmission over the AWGN channel by means of the constellation figure of merit. A construction of sets of Lipschitz integers is presented that leads to a better constellation figure of merit compared to ordinary Lipschitz integer constellations. In particular, it is demonstrated that the concept of set partitioning can be applied to quotient rings of Lipschitz integers where the number of elements is not a prime number. It is shown that it is always possible to partition such quotient rings into additive subgroups in a manner that the minimum Euclidean distance of each subgroup is strictly larger than in the original set. The resulting signal constellations have a better performance for transmission over an additive white Gaussian noise channel compared to Gaussian integer constellations and to ordinary Lipschitz integer constellations.
In this article, we give the construction of new four-dimensional signal constellations in the Euclidean space, which represent a certain combination of binary frequency-shift keying (BFSK) and M-ary amplitude-phase-shift keying (MAPSK). Description of such signals and the formulas for calculating the minimum squared Euclidean distance are presented. We have developed an analytic building method for even and odd values of M. Hence, no computer search and no heuristic methods are required. The new optimized BFSK-MAPSK (M = 5,6,···,16) signal constructions are built for the values of modulation indexes h =0.1,0.15,···,0.5 and their parameters are given. The results of computer simulations are also provided. Based on the obtained results we can conclude, that BFSK-MAPSK systems outperform similar four-dimensional systems both in terms of minimum squared Euclidean distance and simulated symbol error rate.
This paper proposes a novel transmission scheme for generalized multistream spatial modulation. This new approach uses one Mannheim error correcting codes over Gaussian or Eisenstein integers as multidimensional signal constellations. These codes enable a suboptimal decoding strategy with near maximum likelihood performance for transmission over the additive white Gaussian noise channel. In this contribution, this decoding algorithm is generalized to the detection for generalized multistream spatial modulation. The proposed method can outperform conventional generalized multistream spatial modulation with respect to decoding performance, detection complexity, and spectral efficiency.
In this letter, we present an approach to building a new generalized multistream spatial modulation system (GMSM), where the information is conveyed by the two active antennas with signal indices and using all possible active antenna combinations. The signal constellations associated with these antennas may have different sizes. In addition, four-dimensional hybrid frequency-phase modulated signals are utilized in GMSM. Examples of GMSM systems are given and computer simulation results are presented for transmission over Rayleigh and deep Nakagami- m flat-fading channels when maximum-likelihood detection is used. The presented results indicate a significant improvement of characteristics compared to the best-known similar systems.
Four-Dimensional Hurwitz Signal Constellations, Set Partitioning, Detection, and Multilevel Coding
(2021)
The Hurwitz lattice provides the densest four-dimensional packing. This fact has motivated research on four-dimensional Hurwitz signal constellations for optical and wireless communications. This work presents a new algebraic construction of finite sets of Hurwitz integers that is inherently accompanied by a respective modulo operation. These signal constellations are investigated for transmission over the additive white Gaussian noise (AWGN) channel. It is shown that these signal constellations have a better constellation figure of merit and hence a better asymptotic performance over an AWGN channel when compared with conventional signal constellations with algebraic structure, e.g., two-dimensional Gaussian-integer constellations or four-dimensional Lipschitz-integer constellations. We introduce two concepts for set partitioning of the Hurwitz integers. The first method is useful to reduce the computational complexity of the symbol detection. This suboptimum detection approach achieves near-maximum-likelihood performance. In the second case, the partitioning exploits the algebraic structure of the Hurwitz signal constellations. We partition the Hurwitz integers into additive subgroups in a manner that the minimum Euclidean distance of each subgroup is larger than in the original set. This enables multilevel code constructions for the new signal constellations.
Spatial modulation is a low-complexity multipleinput/ multipleoutput transmission technique. The recently proposed spatial permutation modulation (SPM) extends the concept of spatial modulation. It is a coding approach, where the symbols are dispersed in space and time. In the original proposal of SPM, short repetition codes and permutation codes were used to construct a space-time code. In this paper, we propose a similar coding scheme that combines permutation codes with codes over Gaussian integers. Short codes over Gaussian integers have good distance properties. Furthermore, the code alphabet can directly be applied as signal constellation, hence no mapping is required. Simulation results demonstrate that the proposed coding approach outperforms SPM with repetition codes.
Multi-dimensional spatial modulation is a multipleinput/ multiple-output wireless transmission technique, that uses only a few active antennas simultaneously. The computational complexity of the optimal maximum-likelihood (ML) detector at the receiver increases rapidly as more transmit antennas or larger modulation orders are employed. ML detection may be infeasible for higher bit rates. Many suboptimal detection algorithms for spatial modulation use two-stage detection schemes where the set of active antennas is detected in the first stage and the transmitted symbols in the second stage. Typically, these detection schemes use the ML strategy for the symbol detection. In this work, we consider a suboptimal detection algorithm for the second detection stage. This approach combines equalization and list decoding. We propose an algorithm for multi-dimensional signal constellations with a reduced search space in the second detection stage through set partitioning. In particular, we derive a set partitioning from the properties of Hurwitz integers. Simulation results demonstrate that the new algorithm achieves near-ML performance. It significantly reduces the complexity when compared with conventional two-stage detection schemes. Multi-dimensional constellations in combination with suboptimal detection can even outperform conventional signal constellations in combination with ML detection.
This letter proposes two contributions to improve the performance of transmission with generalized multistream spatial modulation (SM). In particular, a modified suboptimal detection algorithm based on the Gaussian approximation method is proposed. The proposed modifications reduce the complexity of the Gaussian approximation method and improve the performance for high signal-to-noise ratios. Furthermore, this letter introduces signal constellations based on Hurwitz integers, i.e., a 4-D lattice. Simulation results demonstrate that these signal constellations are beneficial for generalized SM with two active antennas.
This work proposes a construction for low-density parity-check (LDPC) codes over finite Gaussian integer fields. Furthermore, a new channel model for codes over Gaussian integers is introduced and its channel capacity is derived. This channel can be considered as a first order approximation of the additive white Gaussian noise channel with hard decision detection where only errors to nearest neighbors in the signal constellation are considered. For this channel, the proposed LDPC codes can be decoded with a simple non-probabilistic iterative decoding algorithm similar to Gallager's decoding algorithm A.