Refine
Year of publication
Document Type
- Conference Proceeding (20)
- Article (5)
- Report (1)
Keywords
- Adaptive (1)
- Automated Docking of Vessels (1)
- Autonomous vessel (1)
- Backstepping control (2)
- Birth Density (1)
- Bounded uncertainty (2)
- Collision avoidance (1)
- Correlation analysis (1)
- Data Fusion (1)
- Disturbance rejection (1)
Institute
This paper presents a new likelihood-based partitioning method of the measurement set for the extended object probability hypothesis density (PHD) filter framework. Recent work has mostly relied on heuristic partitioning methods that cluster the measurement data based on a distance measure between the single measurements. This can lead to poor filter performance if the tracked extended objects are closely spaced. The proposed method called Stochastic Partitioning (StP) is based on sampling methods and was inspired by a former work of Granström et. al. In this work, the StP method is applied to a Gaussian inverse Wishart (GIW) PHD filter and compared to a second filter implementation that uses the heuristic Distance Partitioning (DP) method. The performance is evaluated in Monte Carlo simulations in a scenario where two objects approach each other. It is shown that the sampling based StP method leads to an improved filter performance compared to DP.
In this paper, a gain-scheduled nonlinear control structure is proposed for a surface vessel, which takes advantage of extended linearisation techniques. Thereby, an accurate tracking of desired trajectories can be guaranteed that contributes to a safe and reliable water transport. The PI state feedback control is extended by a feedforward control based on an inverse system model. To achieve an accurate trajectory tracking, however, an observer-based disturbance compensation is necessary: external disturbances by cross currents or wind forces in lateral direction and wave-induced measurement disturbances are estimated by a nonlinear observer and used for a compensation. The efficiency and the achieved tracking performance are shown by simulation results using a validated model of the ship Korona at the HTWG Konstanz, Germany. Here, both tracking behaviour and rejection of disturbance forces in lateral direction are considered.
In this paper, utilisation of an Unscented Kalman Filter for concurrently performing disturbance estimation and wave filtering is investigated. Experimental results are provided that demonstrate very good performance subject to both tasks. For the filter, a dynamic model has been used which was optimised via correlation analysis in order to obtain a minimum set of relevant parameters. This model has also been validated by experiments deploying a small vessel. A simulation study is presented to evaluate the performance using known quantities. Experimental trials have been performed on the Rhine river. The results show that for instance flow direction and varying current velocities can continuously be estimated with decent precision, even while the boat is performing turning manoeuvres. Moreover, the filtering properties are very satisfactory. This makes the filter suitable for being used, for instance, in autonomous vessel applications or assistance systems.
The trajectory tracking problem for a fully-actuated real-scaled surface vessel is addressed in this paper by designing a backstepping controller with a multivariable integral action, considering the thruster allocation problem. The performance and robustness of this controller are evaluated in simulation, taking into account environmental disturbance forces and modeling mismatch, using a docking maneuver as a reference trajectory. Furthermore, a comparison between the backstepping controller and a nonlinear position PID-Control with flatness based-feedforward is also analyzed.
The trajectory tracking problem for a real-scaled fully-actuated surface vessel is addressed in this paper. A nonlinear model predictive control (NMPC) scheme was designed to track a reference trajectory, considering state and input constraints, and environmental disturbances, which were assumed to be constant over the prediction horizon. The controller was tested by performing docking maneuvers using the real-scaled research vessel from the University of Applied Sciences Konstanz at the Rhine river in Germany. A comparison between the experimental results and the simulated ones was analyzed to validate the NMPC controller.
Trajectory Tracking of a Fully-actuated Surface Vessel using Nonlinear Model Predictive Control
(2021)
The trajectory tracking problem for a fully-actuated real-scaled surface vessel is addressed in this paper. The unknown hydrodynamic and propulsion parameters of the vessel’s dynamic model were identified using an experimental maneuver-based identification process. Then, a nonlinear model predictive control (NMPC) scheme is designed and the controller’s performance is assessed through the variation of NMPC parameters and constraints tightening for tracking a curved trajectory.
Reliability Assessment of an Unscented Kalman Filter by Using Ellipsoidal Enclosure Techniques
(2022)
The Unscented Kalman Filter (UKF) is widely used for the state, disturbance, and parameter estimation of nonlinear dynamic systems, for which both process and measurement uncertainties are represented in a probabilistic form. Although the UKF can often be shown to be more reliable for nonlinear processes than the linearization-based Extended Kalman Filter (EKF) due to the enhanced approximation capabilities of its underlying probability distribution, it is not a priori obvious whether its strategy for selecting sigma points is sufficiently accurate to handle nonlinearities in the system dynamics and output equations. Such inaccuracies may arise for sufficiently strong nonlinearities in combination with large state, disturbance, and parameter covariances. Then, computationally more demanding approaches such as particle filters or the representation of (multi-modal) probability densities with the help of (Gaussian) mixture representations are possible ways to resolve this issue. To detect cases in a systematic manner that are not reliably handled by a standard EKF or UKF, this paper proposes the computation of outer bounds for state domains that are compatible with a certain percentage of confidence under the assumption of normally distributed states with the help of a set-based ellipsoidal calculus. The practical applicability of this approach is demonstrated for the estimation of state variables and parameters for the nonlinear dynamics of an unmanned surface vessel (USV).
Modeling a suitable birth density is a challenge when using Bernoulli filters such as the Labeled Multi-Bernoulli (LMB) filter. The birth density of newborn targets is unknown in most applications, but must be given as a prior to the filter. Usually the birth density stays unchanged or is designed based on the measurements from previous time steps.
In this paper, we assume that the true initial state of new objects is normally distributed. The expected value and covariance of the underlying density are unknown parameters. Using the estimated multi-object state of the LMB and the Rauch-Tung-Striebel (RTS) recursion, these parameters are recursively estimated and adapted after a target is detected.
The main contribution of this paper is an algorithm to estimate the parameters of the birth density and its integration into the LMB framework. Monte Carlo simulations are used to evaluate the detection driven adaptive birth density in two scenarios. The approach can also be applied to filters that are able to estimate trajectories.
Experimental Validation of Ellipsoidal Techniques for State Estimation in Marine Applications
(2022)
A reliable quantification of the worst-case influence of model uncertainty and external disturbances is crucial for the localization of vessels in marine applications. This is especially true if uncertain GPS-based position measurements are used to update predicted vessel locations that are obtained from the evaluation of a ship’s state equation. To reflect real-life working conditions, these state equations need to account for uncertainty in the system model, such as imperfect actuation and external disturbances due to effects such as wind and currents. As an application scenario, the GPS-based localization of autonomous DDboat robots is considered in this paper. Using experimental data, the efficiency of an ellipsoidal approach, which exploits a bounded-error representation of disturbances and uncertainties, is demonstrated.