Refine
Document Type
- Conference Proceeding (15)
- Article (4)
- Report (1)
Keywords
- Adaptive (1)
- Automated Docking of Vessels (1)
- Backstepping control (1)
- Birth Density (1)
- Bounded uncertainty (2)
- Collision avoidance (1)
- Correlation analysis (1)
- Data Fusion (1)
- Disturbance rejection (1)
- Docking Experiments (1)
Institute
In this paper, a gain-scheduled nonlinear control structure is proposed for a surface vessel, which takes advantage of extended linearisation techniques. Thereby, an accurate tracking of desired trajectories can be guaranteed that contributes to a safe and reliable water transport. The PI state feedback control is extended by a feedforward control based on an inverse system model. To achieve an accurate trajectory tracking, however, an observer-based disturbance compensation is necessary: external disturbances by cross currents or wind forces in lateral direction and wave-induced measurement disturbances are estimated by a nonlinear observer and used for a compensation. The efficiency and the achieved tracking performance are shown by simulation results using a validated model of the ship Korona at the HTWG Konstanz, Germany. Here, both tracking behaviour and rejection of disturbance forces in lateral direction are considered.
In this paper, utilisation of an Unscented Kalman Filter for concurrently performing disturbance estimation and wave filtering is investigated. Experimental results are provided that demonstrate very good performance subject to both tasks. For the filter, a dynamic model has been used which was optimised via correlation analysis in order to obtain a minimum set of relevant parameters. This model has also been validated by experiments deploying a small vessel. A simulation study is presented to evaluate the performance using known quantities. Experimental trials have been performed on the Rhine river. The results show that for instance flow direction and varying current velocities can continuously be estimated with decent precision, even while the boat is performing turning manoeuvres. Moreover, the filtering properties are very satisfactory. This makes the filter suitable for being used, for instance, in autonomous vessel applications or assistance systems.
Comparison and Identifiability Analysis of Friction Models for the Dither Motion of a Solenoid
(2018)
In this paper, the mechanical subsystem of a proportional solenoid excited by a dither signal is considered. The objective is to find a suitable friction model that reflects the characteristic mechanical properties of the dynamic system. Several different friction models from the literature are compared. The friction models are evaluated with respect to their accuracy as well as their practical identifiability, the latter being quantified based on the Fisher information matrix.
This paper presents a new likelihood-based partitioning method of the measurement set for the extended object probability hypothesis density (PHD) filter framework. Recent work has mostly relied on heuristic partitioning methods that cluster the measurement data based on a distance measure between the single measurements. This can lead to poor filter performance if the tracked extended objects are closely spaced. The proposed method called Stochastic Partitioning (StP) is based on sampling methods and was inspired by a former work of Granström et. al. In this work, the StP method is applied to a Gaussian inverse Wishart (GIW) PHD filter and compared to a second filter implementation that uses the heuristic Distance Partitioning (DP) method. The performance is evaluated in Monte Carlo simulations in a scenario where two objects approach each other. It is shown that the sampling based StP method leads to an improved filter performance compared to DP.
Feature-Based Proposal Density Optimization for Nonlinear Model Predictive Path Integral Control
(2022)
This paper presents a novel feature-based sampling strategy for nonlinear Model Predictive Path Integral (MPPI) control. In MPPI control, the optimal control is calculated by solving a stochastic optimal control problem online using the weighted inference of stochastic trajectories. While the algorithm can be excellently parallelized the closed- loop performance is dependent on the information quality of the drawn samples. Because these samples are drawn using a proposal density, its quality is crucial for the solver and thus the controller performance. In classical MPPI control, the explored state-space is strongly constrained by assumptions that refer to the control value variance, which are necessary for transforming the Hamilton-Jacobi-Bellman (HJB) equation into a linear second-order partial differential equation. To achieve excellent performance even with discontinuous cost-functions, in this novel approach, knowledge-based features are used to determine the proposal density and thus, the region of state- space for exploration. This paper addresses the question of how the performance of the MPPI algorithm can be improved using a feature-based mixture of base densities. Further, the developed algorithm is applied on an autonomous vessel that follows a track and concurrently avoids collisions using an emergency braking feature.
This paper presents the swinging up and stabilization control of a Furuta pendulum using the recently published nonlinear Model Predictive Path Integral (MPPI) approach. This algorithm is based on a path integral over stochastic trajectories and can be parallelized easily. The controller parameters are tuned offline regarding the nonlinear system dynamics and simulations. Constraints in terms of state and input are taken into account in the cost function. The presented approach sequentially computes an optimal control sequence that minimizes this optimal control problem online. The control strategy has been tested in full-scale experiments using a pendulum prototype. The investigated MPPI controller has demonstrated excellent performance in simulation for the swinging up and stabilizing task. In order to also achieve outstanding performance in a real-world experiment using a controller with limited computing power, a linear quadratic controller (LQR) is designed for the stabilization task. In this paper, the determination of the controller parameters for the MPPI algorithm is described in detail. Further, a discussion treats the advantages of the nonlinear MPPI control.
Docking Control of a Fully-Actuated Autonomous Vessel using Model Predictive Path Integral Control
(2022)
This paper presents the docking control of an autonomous vessel using the nonlinear Model Predictive Path Integral (MPPI) approach. This algorithm is based on a path integral over stochastic trajectories and can be parallelized easily. The controller parameters are tuned offline using knowledge of the system and simulations, including nonlinear state and disturbance observer. The cost function implicitly contains information regarding the surrounding of the docking position. This approach allows continuous optimization of the trajectory with respect to the system state, disturbance state and actuator dynamics. The control strategy has been tested in full-scale experiments using the solar research vessel Solgenia. The investigated MPPI controller has demonstrated excellent performance in both, simulation and real-world experiments. This paper addresses the question of how the MPPI algorithm can be applied to dock a fully-actuated vessel and what benefits its application achieves.
The trajectory tracking problem for a fully-actuated real-scaled surface vessel is addressed in this paper by designing a backstepping controller with a multivariable integral action, considering the thruster allocation problem. The performance and robustness of this controller are evaluated in simulation, taking into account environmental disturbance forces and modeling mismatch, using a docking maneuver as a reference trajectory. Furthermore, a comparison between the backstepping controller and a nonlinear position PID-Control with flatness based-feedforward is also analyzed.