Refine
Year of publication
Document Type
- Conference Proceeding (21)
- Article (6)
- Report (1)
Keywords
- Adaptive (1)
- Automated Docking of Vessels (1)
- Autonomous surface vessels (1)
- Autonomous vessel (1)
- Backstepping control (2)
- Birth Density (1)
- Bounded uncertainty (2)
- Collision avoidance (2)
- Correlation analysis (1)
- Data Fusion (1)
Institute
In this paper, a gain-scheduled nonlinear control structure is proposed for a surface vessel, which takes advantage of extended linearisation techniques. Thereby, an accurate tracking of desired trajectories can be guaranteed that contributes to a safe and reliable water transport. The PI state feedback control is extended by a feedforward control based on an inverse system model. To achieve an accurate trajectory tracking, however, an observer-based disturbance compensation is necessary: external disturbances by cross currents or wind forces in lateral direction and wave-induced measurement disturbances are estimated by a nonlinear observer and used for a compensation. The efficiency and the achieved tracking performance are shown by simulation results using a validated model of the ship Korona at the HTWG Konstanz, Germany. Here, both tracking behaviour and rejection of disturbance forces in lateral direction are considered.
In this work an approach to generate collisions-free trajectories for vessels is presented. The approach consist of a global path planner and a local evasive trajectory planner. The global path planner uses chart information from ENCs to estimate waypoints for a global path avoiding obstacles defined in a chart. The local evasive trajectory planner uses information of a target tracking system to proof for a subsection of the global path if a collisions with other vessels will probably occur. In case of possible collisions the local evasive trajectory planner estimates an evasive trajectory to avoid the dynamic obstacles and lead back to the global path after the avoidance manoeuvre. For the global path planning algorithm a grid based reachability graph is applied to consider the turning circle of the own vessel. The local planner uses a grid based search algorithm that takes into account the turning circle of the vessel also. The result of both search algorithms is a sequence of waypoints defining a collision free path. A Bézier curve interpolation is applied to these waypoints to achieve a path with continuous curvatures suitable for path following algorithms.
Feature-Based Proposal Density Optimization for Nonlinear Model Predictive Path Integral Control
(2022)
This paper presents a novel feature-based sampling strategy for nonlinear Model Predictive Path Integral (MPPI) control. In MPPI control, the optimal control is calculated by solving a stochastic optimal control problem online using the weighted inference of stochastic trajectories. While the algorithm can be excellently parallelized the closed- loop performance is dependent on the information quality of the drawn samples. Because these samples are drawn using a proposal density, its quality is crucial for the solver and thus the controller performance. In classical MPPI control, the explored state-space is strongly constrained by assumptions that refer to the control value variance, which are necessary for transforming the Hamilton-Jacobi-Bellman (HJB) equation into a linear second-order partial differential equation. To achieve excellent performance even with discontinuous cost-functions, in this novel approach, knowledge-based features are used to determine the proposal density and thus, the region of state- space for exploration. This paper addresses the question of how the performance of the MPPI algorithm can be improved using a feature-based mixture of base densities. Further, the developed algorithm is applied on an autonomous vessel that follows a track and concurrently avoids collisions using an emergency braking feature.
This paper presents the swinging up and stabilization control of a Furuta pendulum using the recently published nonlinear Model Predictive Path Integral (MPPI) approach. This algorithm is based on a path integral over stochastic trajectories and can be parallelized easily. The controller parameters are tuned offline regarding the nonlinear system dynamics and simulations. Constraints in terms of state and input are taken into account in the cost function. The presented approach sequentially computes an optimal control sequence that minimizes this optimal control problem online. The control strategy has been tested in full-scale experiments using a pendulum prototype. The investigated MPPI controller has demonstrated excellent performance in simulation for the swinging up and stabilizing task. In order to also achieve outstanding performance in a real-world experiment using a controller with limited computing power, a linear quadratic controller (LQR) is designed for the stabilization task. In this paper, the determination of the controller parameters for the MPPI algorithm is described in detail. Further, a discussion treats the advantages of the nonlinear MPPI control.
Docking Control of a Fully-Actuated Autonomous Vessel using Model Predictive Path Integral Control
(2022)
This paper presents the docking control of an autonomous vessel using the nonlinear Model Predictive Path Integral (MPPI) approach. This algorithm is based on a path integral over stochastic trajectories and can be parallelized easily. The controller parameters are tuned offline using knowledge of the system and simulations, including nonlinear state and disturbance observer. The cost function implicitly contains information regarding the surrounding of the docking position. This approach allows continuous optimization of the trajectory with respect to the system state, disturbance state and actuator dynamics. The control strategy has been tested in full-scale experiments using the solar research vessel Solgenia. The investigated MPPI controller has demonstrated excellent performance in both, simulation and real-world experiments. This paper addresses the question of how the MPPI algorithm can be applied to dock a fully-actuated vessel and what benefits its application achieves.
This paper presents the integration of a spline based extension model into a probability hypothesis density (PHD) filter for extended targets. Using this filter the position and extension of each object as well as the number of present objects can jointly be estimated. Therefore, the spline extension model and the PHD filter are addressed and merged in a Gaussian mixture (GM) implementation. Simulation results using artificial laser measurements are used to evaluate the performance of the presented filter. Finally, the results are illustrated and discussed.
Extended Target Tracking With a Lidar Sensor Using Random Matrices and a Virtual Measurement Model
(2022)
Random matrices are widely used to estimate the extent of an elliptically contoured object. Usually, it is assumed that the measurements follow a normal distribution, with its standard deviation being proportional to the object’s extent. However, the random matrix approach can filter the center of gravity and the covariance matrix of measurements independently of the measurement model. This work considers the whole chain from data acquisition to the linear Kalman Filter with extension estimation as a reference plant. The input is the (unknown) ground truth (position and extent). The output is the filtered center of gravity and the filtered covariance matrix of the measurement distribution. A virtual measurement model emulates the behavior of the reference plant. The input of the virtual measurement model is adapted using the proposed algorithm until the output parameters of the virtual measurement model match the result of the reference plant. After the adaptation, the input to the virtual measurement model is considered an estimation for position and extent. The main contribution of this paper is the reference model concept and an adaptation algorithm to optimize the input of the virtual measurement model.
Modeling a suitable birth density is a challenge when using Bernoulli filters such as the Labeled Multi-Bernoulli (LMB) filter. The birth density of newborn targets is unknown in most applications, but must be given as a prior to the filter. Usually the birth density stays unchanged or is designed based on the measurements from previous time steps.
In this paper, we assume that the true initial state of new objects is normally distributed. The expected value and covariance of the underlying density are unknown parameters. Using the estimated multi-object state of the LMB and the Rauch-Tung-Striebel (RTS) recursion, these parameters are recursively estimated and adapted after a target is detected.
The main contribution of this paper is an algorithm to estimate the parameters of the birth density and its integration into the LMB framework. Monte Carlo simulations are used to evaluate the detection driven adaptive birth density in two scenarios. The approach can also be applied to filters that are able to estimate trajectories.
This paper compares novel methods to efficiently include input constraints using the nonlinear Model Predictive Path Integral (MPPI) approach. The MPPI algorithm solves stochastic optimal control problems and is based on sampled trajectories. MPPI results from the physical path integral framework. Sample-based algorithms are characterized by the fact that they can be computed in parallel and offer the possibility to handle discontinuous dynamics and cost functions. However, using standard MPPI the input costs in the Lagrange term have to be chosen quadratic. This fact is unfavorable for various real applications. Further, in standard nonlinear model predictive control (NMPC) approaches hard box constraints on the control input trajectory can be treated directly. In this contribution, novel architectures based on integrator action are compared. The investigated input constraint MPPI controllers were tested on an autonomous self-balancing vehicle. Therefore both, simulation and real-world experiments are presented. This paper addresses the question of how the MPPI algorithm can be further developed to consider input box constraints. Videos of the self-balancing vehicle are available at: https: https://tinyurl.com/mvn8j7vf
In this paper, utilisation of an Unscented Kalman Filter for concurrently performing disturbance estimation and wave filtering is investigated. Experimental results are provided that demonstrate very good performance subject to both tasks. For the filter, a dynamic model has been used which was optimised via correlation analysis in order to obtain a minimum set of relevant parameters. This model has also been validated by experiments deploying a small vessel. A simulation study is presented to evaluate the performance using known quantities. Experimental trials have been performed on the Rhine river. The results show that for instance flow direction and varying current velocities can continuously be estimated with decent precision, even while the boat is performing turning manoeuvres. Moreover, the filtering properties are very satisfactory. This makes the filter suitable for being used, for instance, in autonomous vessel applications or assistance systems.