Refine
Document Type
- Conference Proceeding (12)
- Article (4)
- Other Publications (1)
Has Fulltext
- no (17)
Keywords
- Apnoe (1)
- Atmung (2)
- Atmungssignal (1)
- Bewegung (1)
- Bewegungssignal (1)
- Biomedical signal processing (1)
- Breathing (1)
- FSR sensor (1)
- Heart rate (1)
- Herzfrequenz (1)
Institute
Objective: This paper presents an algorithm for non-invasive sleep stage identification using respiratory, heart rate and movement signals. The algorithm is part of a system suitable for long-term monitoring in a home environment, which should support experts analysing sleep. Approach: As there is a strong correlation between bio-vital signals and sleep stages, multinomial logistic regression was chosen for categorical distribution of sleep stages. Several derived parameters of three signals (respiratory, heart rate and movement) are input for the proposed method. Sleep recordings of five subjects were used for the training of a machine learning model and 30 overnight recordings collected from 30 individuals with about 27 000 epochs of 30 s intervals each were evaluated. Main results: The achieved rate of accuracy is 72% for Wake, NREM, REM (with Cohen's kappa value 0.67) and 58% for Wake, Light (N1 and N2), Deep (N3) and REM stages (Cohen's kappa is 0.50). Our approach has confirmed the potential of this method and disclosed several ways for its improvement. Significance: The results indicate that respiratory, heart rate and movement signals can be used for sleep studies with a reasonable level of accuracy. These inputs can be obtained in a non-invasive way applying it in a home environment. The proposed system introduces a convenient approach for a long-term monitoring system which could support sleep laboratories. The algorithm which was developed allows for an easy adjustment of input parameters that depend on available signals and for this reason could also be used with various hardware systems.
This document presents an algorithm for a non-obtrusive recognition of Sleep/Wake states using signals derived from ECG, respiration, and body movement captured while lying in a bed. As a core mathematical base of system data analytics, multinomial logistic regression techniques were chosen. Derived parameters of the three signals are used as the input for the proposed method. The overall achieved accuracy rate is 84% for Wake/Sleep stages, with Cohen’s kappa value 0.46. The presented algorithm should support experts in analyzing sleep quality in more detail. The results confirm the potential of this method and disclose several ways for its improvement.
To assess the quality of a person’s sleep, it is essential to examine the sleep behaviour by identifying the several sleep stages, their durations and sleep cycles. The established and gold standard procedure for sleep stage scoring is overnight polysomnography (PSG) with the Rechtschaffen and Kales (R-K) method. Unfortunately, the conduct of PSG is timeconsuming and unfamiliar for the subjects and might have an impact of the recorded data. To avoid the disadvantages with PSG, it is important to make further investigations in low-cost home diagnostic systems. For this intention it is necessary to find suitable bio vital parameters for classifying sleep stages without any physical impairments at the same time.
Due to the promising results in several publications we want to analyse existing methods for sleep stage classification based on the parameters body movement,
heartbeat and respiration. Our aim was to find different behaviour patterns in the several sleep stages. Therefore, the average values of 15 wholenight PSG recordings -obtained from the ‘DREAMS Subjects Database’- where analysed in the light of heartbeat, body movement and respiration with 10 different methods.
Das häusliche Umfeld kann vor allem für langfristiges Schlafmonitoring verwendet werden. Gute Patientenakzeptanz erfordert niedrige Nutzer- und Installationsbarrieren. Für die Installation zu Hause sind klassische PSG-Systeme aufgrund von ihrer Komplexität wenig passend. Ziel der Entwicklung ist die qualifizierte Erhebung von Parametern, die einerseits eine hinreichend gute Klassifikation von Schlafphasen erlauben und die andererseits durch nicht-invasive Methoden erfasst werden können.
Basierend auf einer Literaturstudie und der Maßgabe nicht-invasive Methoden zu nutzen, wurden folgende Parameter ausgewählt: Körperbewegung, Atmung und Herzschlag. Diese Parameter können nicht-invasiv durch Matratzendrucksensoren erfasst werden. Die Sensorknoten sind als ein Netz von Drucksensoren implementiert, die mit einem leistungsarmen und performanten Mikrocontroller verbunden sind. Alle Knoten sind über einen systemweiten Bus mit Adressarbitrierung verbunden. Der eingebettete Prozessor ist der Mesh-Netzwerk-Endpunkt, der die Netzwerkkonfiguration, Speicherung und Vorverarbeitung der Daten, externen Datenzugriff und Visualisierung ermöglicht.
Das System wurde getestet, indem Experimente durchgeführt wurden, die den Schlaf verschiedener gesunder junger Personen aufzeichneten. Die erhaltenen Ergebnisse bestätigen die Fähigkeit des Systems, Atemfrequenz und Körperbewegung zu erfassen. Ein wesentlicher Unterschied dieses Systems im Vergleich zu anderen Ansätzen ist die innovative Art, die Sensoren unter der Matratze zu platzieren. Diese Eigenschaft erleichtert die kontinuierliche Nutzung des Systems ohne Einfluss auf den gemeinsamen Schlafprozess.
Um Schlafverhalten langfristig zu untersuchen, wird ein Hardwaresystem mit niedrigen Installationsbarrieren für den Einsatz im häuslichen Umfeld. Erste Ergebnisse weisen auf das Potenzial hin, außer Körperbewegung und Atemfrequenz, auch Herzfrequenz erfassen zu können. Die Werte können weiter verbessert werden, wenn die Sensorabfragefrequenz erhöht wird. Nach der Weiterentwicklung des Systems, soll es mit dem Softwarealgorithmus für die Schlafphasenerkennung verbunden werden.
Long-term sleep monitoring can be done primarily in the home environment. Good patient acceptance requires low user and installation barriers. The selection of parameters in this approach is significantly limited compared to a PSG session. The aim is a qualified selection of parameters, which on the one hand allow a sufficiently good classification of sleep phases and on the other hand can be detected by non-invasive methods.
The process of restoring our body and brain from fatigue is directly depend-ing on the quality of sleep. It can be determined from the report of the sleep study results. Classification of sleep stages is the first step of this study and this includes the measurement of biovital data and its further processing.
In this work, the sleep analysis system is based on a hardware sensor net, namely a grid of 24 pressure sensors, supporting sleep phase recognition. In comparison to the leading standard, which is polysomnography, the proposed approach is a non-invasive system. It recognises respiration and body move-ment with only one type of low-cost pressure sensors forming a mesh archi-tecture. The nodes implement as a series of pressure sensors connected to a low-power and performant microcontroller. All nodes are connected via a system wide bus with address arbitration. The embedded processor is the mesh network endpoint that enables network configuration, storing and pre-processing of the data, external data access and visualization.
The system was tested by executing experiments recording the sleep of different healthy young subjects. The results obtained have indicated the po-tential to detect breathing rate and body movement. A major difference of this system in comparison to other approaches is the innovative way to place the sensors under the mattress. This characteristic facilitates the continuous using of the system without any influence on the common sleep process.
Die Erholung unseres Körpers und Gehirns von Müdigkeit ist direkt abhängig von der Qualität des Schlafes, die aus den Ergebnissen einer Schlafstudie ermittelt werden kann. Die Klassifizierung der Schlafstadien ist der erste Schritt dieser Studie und beinhaltet die Messung von Biovitaldaten und deren weitere Verarbeitung. Das non-invasive Schlafanalyse-System basiert auf einem Hardware-Sensornetz aus 24 Drucksensoren, das die Schlafphasenerkennung ermöglicht. Die Drucksensoren sind mit einem energieeffizienten Mikrocontroller über einen systemweiten Bus mit Adressarbitrierung verbunden. Ein wesentlicher Unterschied dieses Systems im Vergleich zu anderen Ansätzen ist die innovative Art, die Sensoren unter der Matratze zu platzieren. Diese Eigenschaft erleichtert die kontinuierliche Nutzung des Systems ohne fühlbaren Einfluss auf das gewohnte Bett. Das System wurde getestet, indem Experimente durchgeführt wurden, die den Schlaf verschiedener gesunder junger Personen aufzeichneten. Die ersten Ergebnisse weisen auf das Potenzial hin, nicht nur Atemfrequenz und Körperbewegung, sondern auch Herzfrequenz zu erfassen.
This document presents a new complete standalone system for a recognition of sleep apnea using signals from the pressure sensors placed under the mattress. The developed hardware part of the system is tuned to filter and to amplify the signal. Its software part performs more accurate signal filtering and identification of apnea events. The overall achieved accuracy of the recognition of apnea occurrence is 91%, with the average measured recognition delay of about 15 seconds, which confirms the suitability of the proposed method for future employment. The main aim of the presented approach is the support of the healthcare system with the cost-efficient tool for recognition of sleep apnea in the home environment.
In diesem Beitrag wird eine Methode des maschinellen Lernens entwickelt, die die Schlafstadienerkennung untersucht. Übliche Methoden der Schlafanalyse basieren auf der Polysomnographie (PSG). Der präsentierte Ansatz basiert auf Signalen, die ausschließlich nicht-invasiv in einer häuslichen Umgebung gemessen werden können. Bewegungs-, Herzschlags- und Atmungssignale können vergleichsweise leicht erfasst werden aber die Erkennung der Schlafstadien ist dadurch erschwert. Die Signale werden als Zeitreihenfolge strukturiert und in Epochen überführt. Die Leistungsfähigkeit von maschinellem Lernen wird der Polysomnographie gegenübergestellt und bewertet.