Refine
Document Type
- Conference Proceeding (14)
- Article (4)
- Other Publications (1)
Has Fulltext
- no (19)
Keywords
- Apnoe (1)
- Atmung (2)
- Atmungssignal (1)
- Bewegung (1)
- Bewegungssignal (1)
- Biomedical monitoring (1)
- Biomedical signal processing (1)
- Breathing (1)
- FSR sensor (1)
- Heart rate (1)
Institute
Recognition of sleep and wake states is one of the relevant parts of sleep analysis. Performing this measurement in a contactless way increases comfort for the users. We present an approach evaluating only movement and respiratory signals to achieve recognition, which can be measured non-obtrusively. The algorithm is based on multinomial logistic regression and analyses features extracted out of mentioned above signals. These features were identified and developed after performing fundamental research on characteristics of vital signals during sleep. The achieved accuracy of 87% with the Cohen’s kappa of 0.40 demonstrates the appropriateness of a chosen method and encourages continuing research on this topic.
The scoring of sleep stages is an essential part of sleep studies. The main objective of this research is to provide an algorithm for the automatic classification of sleep stages using signals that may be obtained in a non-obtrusive way. After reviewing the relevant research, the authors selected a multinomial logistic regression as the basis for their approach. Several parameters were derived from movement and breathing signals, and their combinations were investigated to develop an accurate and stable algorithm. The algorithm was implemented to produce successful results: the accuracy of the recognition of Wake/NREM/REM stages is equal to 73%, with Cohen's kappa of 0.44 for the analyzed 19324 sleep epochs of 30 seconds each. This approach has the advantage of using the only movement and breathing signals, which can be recorded with less effort than heart or brainwave signals, and requiring only four derived parameters for the calculations. Therefore, the new system is a significant improvement for non-obtrusive sleep stage identification compared to existing approaches.
Identifikation von Schlaf- und Wachzuständen durch die Auswertung von Atem- und Bewegungssignalen
(2021)
This paper presents a generic method to enhance performance and incorporate temporal information for cardiorespiratory-based sleep stage classification with a limited feature set and limited data. The classification algorithm relies on random forests and a feature set extracted from long-time home monitoring for sleep analysis. Employing temporal feature stacking, the system could be significantly improved in terms of Cohen’s κ and accuracy. The detection performance could be improved for three classes of sleep stages (Wake, REM, Non-REM sleep), four classes (Wake, Non-REM-Light sleep, Non-REM Deep sleep, REM sleep), and five classes (Wake, N1, N2, N3/4, REM sleep) from a κ of 0.44 to 0.58, 0.33 to 0.51, and 0.28 to 0.44 respectively by stacking features before and after the epoch to be classified. Further analysis was done for the optimal length and combination method for this stacking approach. Overall, three methods and a variable duration between 30 s and 30 min have been analyzed. Overnight recordings of 36 healthy subjects from the Interdisciplinary Center for Sleep Medicine at Charité-Universitätsmedizin Berlin and Leave-One-Out-Cross-Validation on a patient-level have been used to validate the method.
This document presents a new complete standalone system for a recognition of sleep apnea using signals from the pressure sensors placed under the mattress. The developed hardware part of the system is tuned to filter and to amplify the signal. Its software part performs more accurate signal filtering and identification of apnea events. The overall achieved accuracy of the recognition of apnea occurrence is 91%, with the average measured recognition delay of about 15 seconds, which confirms the suitability of the proposed method for future employment. The main aim of the presented approach is the support of the healthcare system with the cost-efficient tool for recognition of sleep apnea in the home environment.
In diesem Beitrag wird eine Methode des maschinellen Lernens entwickelt, die die Schlafstadienerkennung untersucht. Übliche Methoden der Schlafanalyse basieren auf der Polysomnographie (PSG). Der präsentierte Ansatz basiert auf Signalen, die ausschließlich nicht-invasiv in einer häuslichen Umgebung gemessen werden können. Bewegungs-, Herzschlags- und Atmungssignale können vergleichsweise leicht erfasst werden aber die Erkennung der Schlafstadien ist dadurch erschwert. Die Signale werden als Zeitreihenfolge strukturiert und in Epochen überführt. Die Leistungsfähigkeit von maschinellem Lernen wird der Polysomnographie gegenübergestellt und bewertet.
Die Schlafapnoe ist eine häufig auftretende Schlafstörung,
die unterschiedliche Auswirkungen auf unseren Alltag hat; so wurde z. B.
über eine Tagesschläfrigkeit von etwa 25 % der Patienten mit obstruktiver
Schlafapnoe (OSA) berichtet. Ziel dieser Arbeit ist die Entwicklung eines
Systems, das eine nichtinvasive Erkennung der Schlafapnoe in häuslicher
Umgebung ermöglichen soll.
The main aim of presented in this manuscript research is to compare the results of objective and subjective measurement of sleep quality for older adults (65+) in the home environment. A total amount of 73 nights was evaluated in this study. Placing under the mattress device was used to obtain objective measurement data, and a common question on perceived sleep quality was asked to collect the subjective sleep quality level. The achieved results confirm the correlation between objective and subjective measurement of sleep quality with the average standard deviation equal to 2 of 10 possible quality points.
Long-term sleep monitoring can be done primarily in the home environment. Good patient acceptance requires low user and installation barriers. The selection of parameters in this approach is significantly limited compared to a PSG session. The aim is a qualified selection of parameters, which on the one hand allow a sufficiently good classification of sleep phases and on the other hand can be detected by non-invasive methods.