Refine
Year of publication
Document Type
- Conference Proceeding (22)
- Article (4)
Keywords
- Accelerometer (1)
- Activity monitoring (1)
- Assistive systems (1)
- Ballistocardiography (1)
- Biovital signal (2)
- Contactless measurement (2)
- Deep Convolutional Neural Network (1)
- Driving (1)
- Driving safety (1)
- Driving stress (1)
Institute
To evaluate the quality of sleep, it is important to determine how much time was spent in each sleep stage during the night. The gold standard in this domain is an overnight polysomnography (PSG). But the recording of the necessary electrophysiological signals is extensive and complex and the environment of the sleep laboratory, which is unfamiliar to the patient, might lead to distorted results. In this paper, a sleep stage detection algorithm is proposed that uses only the heart rate signal, derived from electrocardiogram (ECG), as a discriminator. This would make it possible for sleep analysis to be performed at home, saving a lot of effort and money. From the heart rate, using the fast Fourier transformation (FFT), three parameters were calculated in order to distinguish between the different sleep stages. ECG data along with a hypnogram scored by professionals was used from Physionet database, making it easy to compare the results. With an agreement rate of 41.3%, this approach is a good foundation for future research.
Sleep is an important aspect in life of every human being. The average sleep duration for an adult is approximately 7 h per day. Sleep is necessary to regenerate physical and psychological state of a human. A bad sleep quality has a major impact on the health status and can lead to different diseases. In this paper an approach will be presented, which uses a long-term monitoring of vital data gathered by a body sensor during the day and the night supported by mobile application connected to an analyzing system, to estimate sleep quality of its user as well as give recommendations to improve it in real-time. Actimetry and historical data will be used to improve the individual recommendations, based on common techniques used in the area of machine learning and big data analysis.
Stress is recognized as a predominant disease with raising costs for rehabilitation and treatment. Currently there several different approaches that can be used for determining and calculating the stress levels. Usually the methods for determining stress are divided in two categories. The first category do not require any special equipment for measuring the stress. This category useless the variation in the behaviour patterns that occur while stress. The core disadvantage for the category is their limitation to specific use case. The second category uses laboratories instruments and biological sensors. This category allow to measure stress precisely and proficiently but on the same time they are not mobile and transportable and do not support real-time feedback. This work presents a mobile system that provides the calculation of stress. For achieving this, the of a mobile ECG sensor is analysed, processed and visualised over a mobile system like a smartphone. This work also explains the used stress measurement algorithm. The result of this work is a portable system that can be used with a mobile system like a smartphone as visual interface for reporting the current stress level.
Stress is a recognized as a predominant disease with growing costs of treatment. The approach presented here is aimed to detect stress using a light weighted, mobile, cheap and easy to use system. The result shows that stress can be detected even in case a person’s natural bio vital data is out of the main range. The system enables storage of measured data, while maintaining communication channels of online and post-processing.
Stress is recognized as a factor of predominant disease and in the future the costs for treatment will increase. The presented approach tries to detect stress in a very basic and easy to implement way, so that the cost for the device and effort to wear it remain low. The user should benefit from the fact that the system offers an easy interface reporting the status of his body in real time. In parallel, the system provides interfaces to pass the obtained data forward for further processing and (professional) analyses, in case the user agrees. The system is designed to be used in every day’s activities and it is not restricted to laboratory use or environments. The implementation of the enhanced prototype shows that the detection of stress and the reporting can be managed using correlation plots and automatic pattern recognition even on a very light-weighted microcontroller platform.
Stress and physical activities are important aspects of life of people. Body reactions on stress and on physical activities can be very similar but long-term stress leads to diseases and damages the body. Currently there is no method to differentiate easily and clearly between these two aspects in a time slot. We have confronted this problem while developing a mobile system for detection and analysis of stress. This paper presents an approach, which uses a long-term monitor with ECG/EKG capabilities and analysis of the heart rate data that is extracted from the device. The focus of the work is to find characteristics that are useful for differentiation between physical activity and stress.