Fakultät Elektrotechnik und Informationstechnik
Refine
Year of publication
Document Type
- Conference Proceeding (16)
- Report (8)
- Bachelor Thesis (5)
- Master's Thesis (5)
- Article (2)
- Study Thesis (2)
- Working Paper (2)
- Doctoral Thesis (1)
Keywords
- Alterung (1)
- Amateurfunk (1)
- Antenne (1)
- Arbitration (1)
- Arbitrierung (1)
- Artificial Intelligence (1)
- Artificial Neural Network (1)
- Artificial Neural Networks (1)
- Artificial intelligence (2)
- Augmented Reality (1)
Neural network representations of simple models, such as linear regression, are being studied increasingly to better understand the underlying principles of deep learning algorithms. However, neural representations of distributional regression models, such as the Cox model, have received little attention so far.We close this gap by proposing a framework for distributional regression using inverse flow transformations (DRIFT), which includes neural representations of the aforementioned models. We empirically demonstrate that the neural representations of models in DRIFT can serve as a substitute for their classical statistical counterparts in several applications involving continuous, ordered, timeseries, and survival outcomes. We confirm that models in DRIFT empirically match the performance of several statistical methods in terms of estimation of partial effects, prediction, and aleatoric uncertainty quantification. DRIFT covers both interpretable statistical models and flexible neural networks opening up new avenues in both statistical modeling and deep learning.
Given the environmental and social challenges the world faces, social entrepreneurship gained an instrumental role addressing these challenges. In this context it is important to understand what drives and motivates these types of social entrepreneurs and, eventually, how can new entrepreneurs be motivated to engage socially. This article applies the three basic needs of self-determination theory - competence, autonomy, and social integration - to the field of sustainable entrepreneurship opening up promising perspectives for promoting and motivating sustainable entrepreneurs. When applying this theory to the motivation continuum one can gain not only insights about the fulfillment of the three basic needs of sustainable entrepreneurs but also better understand their motivational drivers and how to eventually reach the highest level of intrinsic motivation. Overall, this work aims to contribute to the development of more effective support and educational programs aiming to attract and motivate more people to engage in sustainable entrepreneurship.
The efficient and reliable operation of power grids is of great importance for ensuring a stable and uninterrupted supply of electricity. Traditional grid operation techniques have faced challenges due to the increasing integration of renewable energy sources and fluctuating demand patterns caused by the electrification of the heat and mobility sector. This paper presents a novel application of convolutional neural networks in grid operation, utilising their capabilities to recognise fault patterns and finding solutions. Different input data arrangements were investigated to reflect the relationships between neighbouring nodes as imposed by the grid topology. As disturbances we consider voltage deviations exceeding 3% of the nominal voltage or transformer and line overloads. To counteract, we use tab position changes of the transformer stations as well as remote controllable switches installed in the grid. The algorithms are trained and tested on a virtual grid based on real measurement data. Our models show excellent results with test accuracy of up to 99.06% in detecting disturbances in the grid and suggest a suitable solution without performing time-consuming load flow calculations. The proposed approach holds significant potential to address the challenges associated with modern grid operation, paving the way for more efficient and sustainable energy systems.
Transfer of Logistics Optimizations to Material Flow Resource Optimizations using Quantum Computing
(2024)
The complexity of industrial logistics and manufacturing processes increases constantly. As a key enabling technology of the upcoming decades, quantum computing is expected to play a crucial role in solving arising combinatorial optimization problems superior to traditional approaches. This study analyzes the current progress of quantum optimization applications in the logistics sector and aims to transfer an existing vehicle routing use case to a newly conceptualized matrix production use case regarding resource-efficient material flows. The simulation of the originating simple model is executed on a local circuit-based quantum simulator that emulates the behavior of real quantum hardware. Using a QAOA algorithm for problem-solving, optimal results have been achieved for all simulated scenarios. The theoretical material flow model is based on multiple assumptions and was created for testing reasons exclusively. For a realistic practical application, the model must therefore first be adapted and extended to include additional features.
Recently, the popularity of automated and unmanned restaurants has increased. Due to the absence of staff, there is no direct perception of the customers' impressions in order to find out what their experiences with the restaurant concept are like. For this purpose, this paper presents a rating system based on facial expression recognition with pre-trained convolutional neural network (CNN) models. It is composed of an Android mobile application, a web server, and a pre-trained AI-server. Both the food and the environment are supposed to be rated. Currently, three expressions (satisfied, neutral and disappointed) are provided by the scoring system.
Radar based gesture recognition offers great opportunities to increase user-friendliness of countless applications at home, in transportation and for industries. Here, not only data-intensive image and video processing, but also 1D multior single-channel time-series signals are in focus. We examine classical machine learning (ML) approaches and compare them in a reproducible manner. We evaluate the performance of naive methods—such as threshold detection (THD)—and classical ML methods—such as the support vector machine (SVM). The performance is hereby judged by elements such as accuracy, falsepositive rate (FPR), training and prediction time, hardware (HW) requirements and real-time capabilities as well as the size of the classifier. To create the library needed for the given investigation, a two channel continuous wave (CW) modulated radar system with carrier frequency of 10 GHz has been employed. We conclude that naive methods are outperformed by all investigated classical ML methodologies. The results in terms of accuracy and FPR are satisfactory. However, there are large differences between naive and ML methods in terms of HW requirements and real time performance. In conclusion, classical ML methods fulfil the defined requirements satisfactorily, only the real-time performance on low-performance HW is limited due to the required computing power. Thus, the algorithms are a good choice for gesture recognition—of 1D multi- or single-channel time-series signals—if applied correctly.
Die vorliegende Bachelorarbeit widmet sich der physikalischen Modellierung und Simulation eines Rohrverteilungsnetzwerkes mit dem übergeordneten Ziel der Reduzierung des Stromverbrauchs. Es soll untersucht werden, welche Daten ein Unternehmen für eine gelingende, ausreichend akkurate Simulation liefern muss.
Für die Modellierung wird in dieser Arbeit auf Basis vereinfachter Navier-Stokes-Gleichung in Form des Average-Friction-Models, ein Netzwerk mithilfe der Kirchhoff‘schen Gesetzen als zeitabhängige Differentialgleichungen aufgebaut.
Für die Umsetzung wird ein numerischer Lösungsalgorithmus verwendet, der die Anfangswertprobleme mit Mehrschrittverfahren näherungsweise löst.
Es konnte erfolgreich ein Netzwerk mit vorgegebenen Randbedingungen simuliert werden, wobei festgestellt werden musste, dass für einen Vergleich von Realdaten mit den Simulationsergebnissen weitere Daten zur Verfügung gestellt werden müssten.
Die Ergebnisse für die Laufzeituntersuchung des Algorithmus zeigen, dass die Dauer mit steigender Anforderung an die Genauigkeit problematisch zunimmt.
Die folgende Masterarbeit gibt eine Übersicht zu modernen AR-Technologien für den Einsatz in der Lehre mit dem Ziel eine geeignete Software zu identifizieren, die eine AR-Anwendungserstellung sowie die Integration dieser in das Vorlesungsgeschehen der HTWG ermöglicht. Diese Arbeit baut auf einer Literaturrecherche auf, welche den gegenwärtigen Einsatz von AR in der Lehrpraxis analysiert. Es wird der aktuelle Stand der Entwicklung in Bezug auf verschiedenste Hard- und Softwarelösungen dargestellt, einschließlich der Funktionsweise von AR-Anwendungen sowie relevanter Systemkomponenten. Anschließend werden sowohl der Einsatz von Augmented Reality im Bildungsbereich betrachtet als auch andere Sektoren wie Medizin und Industrie einbezogen, um eine umfassende Übersicht zu Fallstudien sowie Praxisbeispielen zu gewährleisten. Der Auswahlprozess der Software wird ebenfalls thematisiert und eine Anleitung zur Benutzung des gewählten Tools, Vuforia Studio, wird dargeboten.
Die Analyse ergab, dass AR-Anwendungen es den Schülern und Studierenden ermöglichen, aktiv am Unterricht bzw. den Vorlesungen teilzunehmen und Inhalte interaktiv zu erkunden, was das Interesse am Lehrinhalt steigert sowie eigenständiges Lernen fördert. Dem Einsatz von AR in der Lehre stehen jedoch Herausforderungen gegenüber. Insbesondere eine pädagogisch angemessene AR-Inhaltserstellung erweist sich als schwierig. Sowohl die Anfertigung
eines 3D-Modells als auch das Arbeiten mit Programmen wie Vuforia Studio selbst stellen sich als zeitintensiv und technologisch anspruchsvoll heraus. Von Seiten der Bildungseinrichtung müssen finanzielle Mittel bereitgestellt werden, denn ohne entsprechende Schulungen und Ressourcen wird auch die Bereitschaft der Lehrenden, sich mit neuen Technologien auseinanderzusetzen, nicht ausreichend sein, um hochwertige AR-Inhalte zu konzipieren. Obwohl die
technologische Infrastruktur zwar deutlich besser ausgebaut ist als noch vor einigen Jahren, vor allem, weil flächendeckendes Internet zur Verfügung steht und die Lernenden zum Großteil eigene Smartgeräte besitzen, ist eine kontinuierliche Investition in Hard- und Software sowie das Pflegen der gesammelten Daten und genutzten Server unerlässlich.
Insgesamt bietet der Einsatz von Augmented Reality in der Lehre vielversprechende Möglichkeiten, um das Lernerlebnis zu verbessern und die Bildungsergebnisse zu optimieren, jedoch müssen die genannten Herausforderungen überwunden werden, um das gesamte Potenzial von Augmented Reality Technologien in der Lehre auszuschöpfen.
Effiziente Energienutzung ist eine bestehende Problematik, welche nicht nur Privathaushalte, sondern auch Institute und Unternehmen betrifft. Die Thematik, mit der sich diese Bachelorarbeit beschäftigt, ist intelligente Regelung von Wärmeenergie für Nichtwohngebäude. Das Ziel hierbei ist die Einsparung von Energie und die daraus folgenden Kosten. Hierfür wird mittels theoretischer Arbeit, Recherche für vorhandene Konzepte durchgeführt. Mit MATLAB Simulink soll anschließend ein eigenes Konzept für eine intelligente, vorausschauende Regelung aufgebaut und simuliert werden. Dabei soll die Raumlufttemperatur eines Raumes in einem Nichtwohngebäude, mithilfe eines modellbasierten prädiktiven Reglers (MPC), auf eine bestimmte Wunschtemperatur geregelt werden. Zum Schluss wird diese mit einer herkömmlichen Regelung (PID-Regelung) verglichen. Als Ergebnis kam dabei heraus, dass sich bei der vorausschauenden Regelung, im Vergleich zur herkömmlichen Regelung, ein deutlich besserer Temperaturverlauf ergibt. Die Raumtemperatur liegt im gewünschten Sollbereich, jedoch sind in den Ergebnissen keine nennenswerten Energieeinsparungen zu sehen. Durch zukünftige Erweiterungen in den MPC, sollte dies aber definitiv möglich sein. Deshalb und aufgrund der genaueren Regelung der Temperatur, wird eine Empfehlung zur Anwendung von MPC-Reglern an Nichtwohngebäude abgegeben.