Institut für Angewandte Forschung - IAF
Refine
Year of publication
Document Type
- Conference Proceeding (53)
- Article (31)
- Journal (Complete Issue of a Journal) (24)
- Part of a Book (4)
- Book (1)
- Other Publications (1)
- Report (1)
- Working Paper (1)
Keywords
- (Strict) sign-regularity (1)
- 1D-CNN (1)
- AHI (1)
- Accelerometer (3)
- Accelerometer sensor (2)
- Accelerometers (1)
- Accessibility (1)
- Ambient assisted living (1)
- Amphibienfahrzeug (1)
- Apnea detection (1)
Institute
Battery power is crucial for wearable devices as it ensures continuous operation, which is critical for real-time health monitoring and emergency alerts. One solution for long-lasting monitoring is energy harvesting systems. Ensuring a consistent energy supply from variable sources for reliable device performance is a major challenge. Additionally, integrating energy harvesting components without compromising the wearability, comfort, and esthetic design of healthcare devices presents a significant bottleneck. Here, we show that with a meticulous design using small and highly efficient photovoltaic (PV) panels, compact thermoelectric (TEG) modules, and two ultra-low-power BQ25504 DC-DC boost converters, the battery life can increase from 9.31 h to over 18 h. The parallel connection of boost converters at two points of the output allows both energy sources to individually achieve maximum power point tracking (MPPT) during battery charging. We found that under specific conditions such as facing the sun for more than two hours, the device became self-powered. Our results demonstrate the long-term and stable performance of the sensor node with an efficiency of 96%. Given the high-power density of solar cells outdoors, a combination of PV and TEG energy can harvest energy quickly and sufficiently from sunlight and body heat. The small form factor of the harvesting system and the environmental conditions of particular occupations such as the oil and gas industry make it suitable for health monitoring wearables worn on the head, face, or wrist region, targeting outdoor workers.
Apnea is a sleep disorder characterized by breathing interruptions during sleep, impacting cardiorespiratory function and overall health. Traditional diagnostic methods, like polysomnography (PSG), are unobtrusive, leading to noninvasive monitoring. This study aims to develop and validate a novel sleep monitoring system using noninvasive sensor technology to estimate cardiorespiratory parameters and detect sleep apnea. We designed a seamless monitoring system integrating noncontact force-sensitive resistor sensors to collect ballistocardiogram signals associated with cardiorespiratory activity. We enhanced the sensor’s sensitivity and reduced the noise by designing a new concept of edge-measuring sensor using a hemisphere dome and mechanical hanger to distribute the force and mechanically amplify the micromovement caused by cardiac and respiration activities. In total, we deployed three edge-measuring sensors, two deployed under the thoracic and one under the abdominal regions. The system is supported with onboard signal preprocessing in multiple physical layers deployed under the mattress. We collected the data in four sleeping positions from 16 subjects and analyzed them using ensemble empirical mode decomposition (EMD) to avoid frequency mixing. We also developed an adaptive thresholding method to identify sleep apnea. The error was reduced to 3.98 and 1.43 beats/min (BPM) in heart rate (HR) and respiration estimation, respectively. The apnea was detected with an accuracy of 87%. We optimized the system such that only one edge-measuring sensor can measure the cardiorespiratory parameters. Such a reduction in the complexity and simplification of the instruction of use shows excellent potential for in-home and continuous monitoring.
Healthy and good sleep is a prerequisite for a rested mind and body. Both form the basis for physical and mental health. Healthy sleep is hindered by sleep disorders, the medically diagnosed frequency of which increases sharply from the age of 40. This chapter describes the formal specification of an on-course practical implementation for a non-invasive system based on biomedical signal processing to support the diagnosis and treatment of sleep-related diseases. The system aims to continuously monitor vital data during sleep in a patient’s home environment over long periods by using non-invasive technologies. At the center of the development is the MORPHEUS Box (MoBo), which consists of five main conceptualizations: the MoBo core, the MoBo-HW, the MoBo algorithm, the MoBo API, and the MoBo app. These synergistic elements aim to support the diagnosis and treatment of sleep-related diseases. Although there are related developments in individual aspects concerning the system, no comparative approach is known that gives a similar scope of functionality, deployment flexibility, extensibility, or the possibility to use multiple user groups. With the specification provided in this chapter, the MORPHEUS project sets a good platform, data model, and transmission strategies to bring an innovative proposal to measure sleep quality and detect sleep diseases from non-invasive sensors.
With the advancement in sensor technology and the trend shift of health measurement from treatment after diagnosis to abnormalities detection long before the occurrence, the approach of turning private spaces into diagnostic spaces has gained much attention. In this work, we designed and implemented a low-cost and compact form factor module that can be deployed on the steering wheel of cars as well as most frequently touch objects at home in order to measure physiological signals from the fingertip of the subject as well as environmental parameters. We estimated the heart rate and SpO2 with the error of 2.83 bpm and 3.52%, respectively. The signal evaluation of skin temperature shows a promising output with respect to environmental recalibration. In addition, the electrodermal activity sensor followed the reference signal, appropriately which indicates the potential for further development and application in stress measurement.
The perception of the amount of stress is subjective to every person, and the perception of it changes depending on many factors. One of the factors that has an impact on perceived stress is the emotional state. In this work, we compare the emotional state of 40 German driving students and present different partitions that can be advantageous for using artificial intelligence and classification. Like this, we evaluate the data quality and prepare for the specific use. The Stress Perceived Questionnaire (PSQ20) was employed to assess the level of stress experienced by individuals while participating in a driving simulation for 5 and 25 min. As a result of our analysis, we present a categorisation of various emotional states into intervals, comparing different classifications and facilitating a more straightforward implementation of artificial intelligence for classification purposes.
Evaluation of a Contactless Accelerometer Sensor System for Heart Rate Monitoring During Sleep
(2024)
The monitoring of a patient's heart rate (HR) is critical in the diagnosis of diseases. In the detection of sleep disorders, it also plays an important role. Several techniques have been proposed, including using sensors to record physiological signals that are automatically examined and analysed. This work aims to evaluate using a contactless HR monitoring system based on an accelerometer sensor during sleep. For this purpose, the oscillations caused by chest movements during heart contractions are recorded by an installation mounted under the bed mattress. The processing algorithm presented in this paper filters the signals and determines the HR. As a result, an average error of about 5 bpm has been documented, i.e., the system can be considered to be used for the forecasted domain.
Unintrusive health monitoring systems is important when continuous monitoring of the patient vital signals is required. In this paper, signals obtained from accelerometers placed under a bed are processed with ballistocardiography algorithms and compared with synchronized electrocardiographic signals.
Cardiovascular diseases (CVD) are leading contributors to global mortality, necessitating advanced methods for vital sign monitoring. Heart Rate Variability (HRV) and Respiratory Rate, key indicators of cardiovascular health, are traditionally monitored via Electrocardiogram (ECG). However, ECG's obtrusiveness limits its practicality, prompting the exploration of Ballistocardiography (BCG) as a non-invasive alternative. BCG records the mechanical activity of the body with each heartbeat, offering a contactless method for HRV monitoring. Despite its benefits, BCG signals are susceptible to external interference and present a challenge in accurately detecting J-Peaks. This research uses advanced signal processing and deep learning techniques to overcome these limitations. Our approach integrates accelerometers for long-term BCG data collection during sleep, applying Discrete Wavelet Transforms (DWT) and Ensemble Empirical Mode Decomposition (EEMD) for feature extraction. The Bi-LSTM model, leveraging these features, enhances heartbeat detection, offering improved reliability over traditional methods. The study's findings indicate that the combined use of DWT, EEMD, and Bi-LSTM for J-Peak detection in BCG signals is effective, with potential applications in unobtrusive long-term cardiovascular monitoring. Our results suggest that this methodology could contribute to HRV monitoring, particularly in home settings, enhancing patient comfort and compliance.
This study investigates the application of Force Sensing Resistor (FSR) sensors and machine learning algorithms for non-invasive body position monitoring during sleep. Although reliable, traditional methods like Polysomnography (PSG) are invasive and unsuited for extended home-based monitoring. Our approach utilizes FSR sensors placed beneath the mattress to detect body positions effectively. We employed machine learning techniques, specifically Random Forest (RF), K-Nearest Neighbors (KNN), and XGBoost algorithms, to analyze the sensor data. The models were trained and tested using data from a controlled study with 15 subjects assuming various sleep positions. The performance of these models was evaluated based on accuracy and confusion matrices. The results indicate XGBoost as the most effective model for this application, followed by RF and KNN, offering promising avenues for home-based sleep monitoring systems.