Institut für angewandte Thermo- und Fluiddynamik - IATF
Refine
Document Type
- Article (3)
- Doctoral Thesis (1)
Keywords
- Catalytic depolymerization (1)
- Degradation (1)
- Feuchtigkeitsmessung (1)
- Lebensmittel (1)
- Lebensmittelqualität (1)
- Lignin (1)
- Maschinelles Lernen (1)
- Messtechnik (1)
- Nickel (1)
- Oberflächenprüfung (1)
Institute
In this work, a storage study was conducted to find suitable packaging material for tomato powder storage. Experiments were laid out in a single factor completely randomized design (CRD) to study the effect of packaging materials on lycopene, vitamin C moisture content, and water activity of tomato powder; The factor (packaging materials) has three levels (low‐density polyethylene bag, polypropylene bottle, wrapped with aluminum foils, and packed in low‐density polyethylene bag) and is replicated three times. During the study, a twin layer solar tunnel dried tomato slices of var. Galilea was used. The dried tomato slices were then ground and packed (40 g each) in the packaging materials and stored at room temperature. Samples were drawn from the packages at 2‐month interval for quality analysis and SAS (version 9.2) software was used for statistical analysis. From the result, higher retention of lycopene (80.13%) and vitamin C (49.32%) and a nonsignificant increase in moisture content and water activity were observed for tomato powder packed in polypropylene bottles after 6 months of storage. For low‐density polyethylene packed samples and samples wrapped with aluminum foil and packed in a low‐density polyethylene bag, 57.06% and 60.45% lycopene retention and 42.9% and 49.23% Vitamin C retention were observed, respectively, after 6 months of storage. Considering the results found, it can be concluded that lycopene and vitamin C content of twin layer solar tunnel dried tomato powder can be preserved at ambient temperature storage by packing in a polypropylene bottle with a safe range of moisture content and water activity levels for 6 months.
In tomato drying, degradation in final quality may occur based on the drying method used and predrying preparation. Hence, this research was conducted to evaluate the effect of different predrying treatments on physicochemical quality and drying kinetics of twin-layer-solar-tunnel-dried tomato slices. During the experimental work, tomato slices of var. Galilea were used. As predrying treatments, 0.5% calcium chloride (CaCl2), 0.5% ascorbic acid (C6H8O6), 0.5% citric acid (C6H8O7), and 0.5% sodium chloride (NaCl) were used. The tomato samples were sliced to 5 mm thickness, socked in the pretreatments for ten minutes, and dried in a twin layer solar tunnel dryer under the weather conditions of Jimma, Ethiopia. Untreated samples were used as control. The moisture losses from the samples were monitored by weighing samples at 2 h interval from each treatment. SAS statistical software version 9.2 was used for analyzing data on the physicochemical quality of tomato slices in CRD with three replications. From the experimental result, it was observed that dried tomato slices pretreated with 0.5% ascorbic acid gave the best retention of vitamin C and total phenolic content with a high sugar/acid ratio. Better retention of lycopene and fast drying were observed in dried tomato slices pretreated with 0.5% sodium chloride, and pretreating tomatoes with 0.5% citric acid resulted in better color values than the other treatments. Compared to the control, pretreating significantly preserved the overall quality of dried tomato slices and increased the moisture removal rate in the twin layer solar tunnel dryer.
Lignin is a potentially high natural source of biological aromatic substances. However, decomposition of the polymer has proven to be quite challenging, as the complex bonds are fairly difficult to break down chemically. This article is intended to provide an overview of various recent methods for the catalytic chemical depolymerization of the biopolymer lignin into chemical products. For this purpose, nickel-, zeolite- and palladium-supported catalysts were examined in detail. In order to achieve this, various experiments of the last years were collected, and the efficiency of the individual catalysts was examined. This included evaluating the reaction conditions under which the catalysts work most efficiently. The influence of co-catalysts and Lewis acidity was also investigated. The results show that it is possible to control the obtained product selectivity very well by the choice of the respective catalysts combined with the proper reaction conditions.
Zur Erfassung von Veränderungen der Produkteigenschaften während der Trocknung von Lebensmitteln werden zerstörungsfreie Qualitätsmesstechniken gefordert, mit denen Veränderungen im Inneren des Produkts bestimmt werden können. Gerade im industriellen Einsatz sind schnelle, präzise, und gleichzeitig robuste Verfahren besonders wichtig, um qualitativ hochwertige Produkte zu erhalten.
In dieser Arbeit wurde zur optischen Qualitätsmessung ein neuartiges multispektrales Kamerasystem eingesetzt, um von Veränderungen der spektralen Oberflächenreflexion bei der Mango- und Ananastrocknung mit Veränderungen der Produktfeuchte, sowie mechanischen und chemischen Eigenschaften zu verknüpfen. Diese Verknüpfung wurde mit maschinellem Lernen erreicht.
In einem ersten Schritt wurde ein neues Kameraprinzip, eine multispektrale Flächenkamera mit vier Objektiven und Vorsatzfiltern, entwickelt und speziell auf den Einsatz in der Obsttrocknung angepasst. Anschließend wurden die Änderungen der Spektren und der Qualitätskriterien während der Trocknung gemessen. Dazu wurden Mango- und Ananasscheiben in einem Einzelschichttrockner bei Lufttemperaturen zwischen 40 °C und 80 °C und relativen Luftfeuchtigkeiten von 5 % bis 30 % getrocknet. Während der gesamten Trocknungsdauer wurde die Produktfeuchte der Proben gemessen, und Bilder mit der multispektralen Flächenkamera aufgenommen. Zur Analysen von nur ausgewählten Bereichen von Interesse in den Bildern wurde ein Softwarefilter entwickelt. Aus Spektraldaten und Prozessdaten konnte mit Algorithmen des maschinellen Lernens die Produktfeuchte zu jedem Zeitpunkt sehr genau vorhergesagt werden (Bestimmtheitsmaß R² von 0,98 bis 0,99). Die Kombination aus dem Prinzip der multispektralen Flächenkamera und maschinellem Lernen wurde in einem anderen Trocknungsprozess und mit weiteren Qualitätskriterien getestet. Dafür wurden Mangoscheiben in einem Schranktrockner getrocknet und deren Produkteigenschaften anhand der Spektraldaten und der Prozessdaten vorhergesagt. Bei der Vorhersage der Farbwerte Δa*, Δb* und ΔE00 sowie des Gehalts an gesamtlöslichen Feststoffen im Rehydrierungswasser wurden Bestimmtheitsmaße R² zwischen 0,56 und 0,94 erzielt).
Es konnte gezeigt werden, dass die Kombination aus dem neu entwickelten Multispektralkamerasystem und maschinellem Lernen zur Vorhersage der Produktfeuchte und anderer Qualitätskriterien der Produkte eingesetzt werden kann. Auf diese Weise können Qualitätsänderungen während des Prozesses mit nur wenigen Messgeräten inline überwacht werden.