## Institut für Optische Systeme - IOS

### Refine

#### Document Type

- Conference Proceeding (15)
- Article (8)
- Part of a Book (3)
- Doctoral Thesis (2)
- Master's Thesis (2)
- Book (1)
- Preprint (1)
- Report (1)

#### Keywords

- 3D ship detection (1)
- Bayesian convolutional neural networks (1)
- Calibration procedure (1)
- Classification (1)
- Convolutional networks (1)
- Crowdmanagement (1)
- Deep Transformation Model (1)
- Deep learning (4)
- Defect detection (1)
- Didaktik (2)

#### Institute

Targetless Lidar-camera registration is a repeating task in many computer vision and robotics applications and requires computing the extrinsic pose of a point cloud with respect to a camera or vice-versa. Existing methods based on learning or optimization lack either generalization capabilities or accuracy. Here, we propose a combination of pre-training and optimization using a neural network-based mutual information estimation technique (MINE [1]). This construction allows back-propagating the gradient to the calibration parameters and enables stochastic gradient descent. To ensure orthogonality constraints with respect to the rotation matrix we incorporate Lie-group techniques. Furthermore, instead of optimizing on entire images, we operate on local patches that are extracted from the temporally synchronized projected Lidar points and camera frames. Our experiments show that this technique not only improves over existing techniques in terms of accuracy, but also shows considerable generalization capabilities towards new Lidar-camera configurations.

Image novelty detection is a repeating task in computer vision and describes the detection of anomalous images based on a training dataset consisting solely of normal reference data. It has been found that, in particular, neural networks are well-suited for the task. Our approach first transforms the training and test images into ensembles of patches, which enables the assessment of mean-shifts between normal data and outliers. As mean-shifts are only detectable when the outlier ensemble and inlier distribution are spatially separate from each other, a rich feature space, such as a pre-trained neural network, needs to be chosen to represent the extracted patches. For mean-shift estimation, the Hotelling T2 test is used. The size of the patches turned out to be a crucial hyperparameter that needs additional domain knowledge about the spatial size of the expected anomalies (local vs. global). This also affects model selection and the chosen feature space, as commonly used Convolutional Neural Networks or Vision Image Transformers have very different receptive field sizes. To showcase the state-of-the-art capabilities of our approach, we compare results with classical and deep learning methods on the popular dataset CIFAR-10, and demonstrate its real-world applicability in a large-scale industrial inspection scenario using the MVTec dataset. Because of the inexpensive design, our method can be implemented by a single additional 2D-convolution and pooling layer and allows particularly fast prediction times while being very data-efficient.

Lidar sensors are widely used for environmental perception on autonomous robot vehicles (ARV). The field of view (FOV) of Lidar sensors can be reshaped by positioning plane mirrors in their vicinity. Mirror setups can especially improve the FOV for ground detection of ARVs with 2D-Lidar sensors. This paper presents an overview of several geometric designs and their strengths for certain vehicle types. Additionally, a new and easy-to-implement calibration procedure for setups of 2D-Lidar sensors with mirrors is presented to determine precise mirror orientations and positions, using a single flat calibration object with a pre-aligned simple fiducial marker. Measurement data from a prototype vehicle with a 2D-Lidar with a 2 m range using this new calibration procedure are presented. We show that the calibrated mirror orientations are accurate to less than 0.6° in this short range, which is a significant improvement over the orientation angles taken directly from the CAD. The accuracy of the point cloud data improved, and no significant decrease in distance noise was introduced. We deduced general guidelines for successful calibration setups using our method. In conclusion, a 2D-Lidar sensor and two plane mirrors calibrated with this method are a cost-effective and accurate way for robot engineers to improve the environmental perception of ARVs.

We analyse the results of a finite element simulation of a macroscopic model, which describes the movement of a crowd, that is considered as a continuum. A new formulation based on the macroscopic model from Hughes [2] is given. We present a stable numerical algorithm by approximating with a viscosity solution. The fundamental setting is given by an arbitrary domain that can contain several obstacles, several entries and must have at least one exit. All pedestrians have the goal to leave the room as quickly as possible. Nobody prefers a particular exit.

Wer schon einmal dicht gedrängt vor der Konzertbühne stand kann sich die aussichtslose Lage, wenn die Stimmung kippt und Panik aufkommt, gut vorstellen. Es ist sehr wichtig, Räume und Events, die zeitweise von sehr vielen Menschen aufgesucht werden, so zu gestalten und zu planen, dass maximale Sicherheit gewährleistet ist. Damit eine öffentliche Veranstaltung reibungslos verläuft ist eine gründliche Planung, also ein qualitativ hochwertiges Crowd Management unabdingbar.

Die Frage „Wozu braucht man das?“ vonseiten der Studierenden oder Aussagen wie „Das habe ich im Beruf später nie mehr benötigt.“ von ehemaligen Studierenden ist den meisten Mathematikdozierenden sehr vertraut. Im Projekt BiLeSA wird dem Wunsch nach Integration von Praxisnähe im Mathematikunterricht mithilfe einer Smartphone-App, welche ausgewählte Themen in der Mathematik anhand von digitalen Bildern sichtbar macht, umgesetzt. Bei den ausgewählten Themen handelt es sich um (affin) lineare Abbildungen, Ableitungen in höheren Raumdimensionen und Potenzen von Komplexen Zahlen. Die Konzeptionierung des Lernobjekts erfolgte mit dem Design Based Research (DBR) Ansatz, welches im Basisprojekt des IBH-Labs „Seamless Learning“ konzipiert und entwickelt wurde.

Interpretability and uncertainty modeling are important key factors for medical applications. Moreover, data in medicine are often available as a combination of unstructured data like images and structured predictors like patient’s metadata. While deep learning models are state-of-the-art for image classification, the models are often referred to as ’black-box’, caused by the lack of interpretability. Moreover, DL models are often yielding point predictions and are too confident about the parameter estimation and outcome predictions.
On the other side with statistical regression models, it is possible to obtain interpretable predictor effects and capture parameter and model uncertainty based on the Bayesian approach. In this thesis, a publicly available melanoma dataset, consisting of skin lesions and patient’s age, is used to predict the melanoma types by using a semi-structured model, while interpretable components and model uncertainty is quantified. For Bayesian models, transformation model-based variational inference (TM-VI) method is used to determine the posterior distribution of the parameter. Several model constellations consisting of patient’s age and/or skin lesion were implemented and evaluated. Predictive performance was shown to be best by using a combined model of image and patient’s age, while providing the interpretable posterior distribution of the regression coefficient is possible. In addition, integrating uncertainty in image and tabular parts results in larger variability of the outputs corresponding to high uncertainty of the single model components.

The main challenge in Bayesian models is to determine the posterior for the model parameters. Already, in models with only one or few parameters, the analytical posterior can only be determined in special settings. In Bayesian neural networks, variational inference is widely used to approximate difficult-to-compute posteriors by variational distributions. Usually, Gaussians are used as variational distributions (Gaussian-VI) which limits the quality of the approximation due to their limited flexibility. Transformation models on the other hand are flexible enough to fit any distribution. Here we present transformation model-based variational inference (TM-VI) and demonstrate that it allows to accurately approximate complex posteriors in models with one parameter and also works in a mean-field fashion for multi-parameter models like neural networks.

Forecasting is crucial for both system planning and operations in the energy sector. With increasing penetration of renewable energy sources, increasing fluctuations in the power generation need to be taken into account. Probabilistic load forecasting is a young, but emerging research topic focusing on the prediction of future uncertainties. However, the majority of publications so far focus on techniques like quantile regression, ensemble, or scenario-based methods, which generate discrete quantiles or sets of possible load curves. The conditioned probability distribution remains unknown and can only be estimated when the output is post-processed using a statistical method like kernel density estimation.
Instead, the proposed probabilistic deep learning model uses a cascade of transformation functions, known as normalizing flow, to model the conditioned density function from a smart meter dataset containing electricity demand information for over 4,000 buildings in Ireland. Since the whole probability density function is tractable, the parameters of the model can be obtained by minimizing the negative loglikelihood through the state of the art gradient descent. This leads to the model with the best representation of the data distribution.
Two different deep learning models have been compared, a simple three-layer fully connected neural network and a more advanced convolutional neural network for sequential data processing inspired by the WaveNet architecture. These models have been used to parametrize three different probabilistic models, a simple normal distribution, a Gaussian mixture model, and the normalizing flow model. The prediction horizon is set to one day with a resolution of 30 minutes, hence the models predict 48 conditioned probability distributions.
The normalizing flow model outperforms the two other variants for both architectures and proves its ability to capture the complex structures and dependencies causing the variations in the data. Understanding the stochastic nature of the task in such detail makes the methodology applicable for other use cases apart from forecasting. It is shown how it can be used to detect anomalies in the power grid or generate synthetic scenarios for grid planning.

Deep neural networks (DNNs) are known for their high prediction performance, especially in perceptual tasks such as object recognition or autonomous driving. Still, DNNs are prone to yield unreliable predictions when encountering completely new situations without indicating their uncertainty. Bayesian variants of DNNs (BDNNs), such as MC dropout BDNNs, do provide uncertainty measures. However, BDNNs are slow during test time because they rely on a sampling approach. Here we present a single shot MC dropout approximation that preserves the advantages of BDNNs without being slower than a DNN. Our approach is to analytically approximate for each layer in a fully connected network the expected value and the variance of the MC dropout signal. We evaluate our approach on different benchmark datasets and a simulated toy example. We demonstrate that our single shot MC dropout approximation resembles the point estimate and the uncertainty estimate of the predictive distribution that is achieved with an MC approach, while being fast enough for real-time deployments of BDNNs.