Institut für Systemdynamik - ISD
Refine
Document Type
- Conference Proceeding (58)
- Article (27)
- Doctoral Thesis (8)
- Master's Thesis (2)
- Patent (1)
- Report (1)
Keywords
Institute
In 3D extended object tracking (EOT), well-established models exist for tracking the object extent using various shape priors. A single update, however, has to be performed for every measurement using these models leading to a high computational runtime for high-resolution sensors. In this paper, we address this problem by using various model-independent downsampling schemes based on distance heuristics and random sampling as pre-processing before the update. We investigate the methods in a simulated and real-world tracking scenario using two different measurement models with measurements gathered from a LiDAR sensor. We found that there is a huge potential for speeding up 3D EOT by dropping up to 95\% of the measurements in our investigated scenarios when using random sampling. Since random sampling, however, can also result in a subset that does not represent the total set very well, leading to a poor tracking performance, there is still a high demand for further research.
This thesis presents the development of two different state-feedback controllers to solve the trajectory tracking problem, where the vessel needs to reach and follow a time-varying reference trajectory. This motion problem was addressed to a real-scaled fully actuated surface vessel, whose dynamic model had unknown hydrodynamic and propulsion parameters that were identified by applying an experimental maneuver-based identification process. This dynamic model was then used to develop the controllers. The first one was the backstepping controller, which was designed with a local exponential stability proof. For the NMPC, the controller was developed to minimize the tracking error, considering the thrusters’ constraints. Moreover, both controllers considered the thruster allocation problem and counteracted environmental disturbance forces such as current, waves and wind.The effectiveness of these approaches was verified in simulation using Matlab/Simulink and GRAMPC (in the case of the NMPC), and in experimental scenarios, where they were applied to the vessel, performing docking maneuvers at the Rhine River in Constance (Germany).
In the past years, algorithms for 3D shape tracking using radial functions in spherical coordinates represented with different methods have been proposed. However, we have seen that mainly measurements from the lateral surface of the target can be expected in a lot of dynamic scenarios and only few measurements from the top and bottom parts leading to an error-prone shape estimate in the top and bottom regions when using a representation in spherical coordinates. We, therefore, propose to represent the shape of the target using a radial function in cylindrical coordinates, as these only represent regions of the lateral surface, and no information from the top or bottom parts is needed. In this paper, we use a Fourier-Chebyshev double series for 3D shape representation since a mixture of Fourier and Chebyshev series is a suitable basis for expanding a radial function in cylindrical coordinates. We investigate the method in a simulated and real-world maritime scenario with a CAD model of the target boat as a reference. We have found that shape representation in cylindrical coordinates has decisive advantages compared to a shape representation in spherical coordinates and should preferably be used if no prior knowledge of the measurement distribution on the surface of the target is available.
Random matrices are used to filter the center of gravity (CoG) and the covariance matrix of measurements. However, these quantities do not always correspond directly to the position and the extent of the object, e.g. when a lidar sensor is used.In this paper, we propose a Gaussian processes regression model (GPRM) to predict the position and extension of the object from the filtered CoG and covariance matrix of the measurements. Training data for the GPRM are generated by a sampling method and a virtual measurement model (VMM). The VMM is a function that generates artificial measurements using ray tracing and allows us to obtain the CoG and covariance matrix that any object would cause. This enables the GPRM to be trained without real data but still be applied to real data due to the precise modeling in the VMM. The results show an accurate extension estimation as long as the reality behaves like the modeling and e.g. lidar measurements only occur on the side facing the sensor.
This paper presents the integration of a spline based extension model into a probability hypothesis density (PHD) filter for extended targets. Using this filter the position and extension of each object as well as the number of present objects can jointly be estimated. Therefore, the spline extension model and the PHD filter are addressed and merged in a Gaussian mixture (GM) implementation. Simulation results using artificial laser measurements are used to evaluate the performance of the presented filter. Finally, the results are illustrated and discussed.
The trajectory tracking problem for a fully-actuated real-scaled surface vessel is addressed in this paper by designing a backstepping controller with a multivariable integral action, considering the thruster allocation problem. The performance and robustness of this controller are evaluated in simulation, taking into account environmental disturbance forces and modeling mismatch, using a docking maneuver as a reference trajectory. Furthermore, a comparison between the backstepping controller and a nonlinear position PID-Control with flatness based-feedforward is also analyzed.
The code-based McEliece cryptosystem is a promising candidate for post-quantum cryptography. The sender encodes a message, using a public scrambled generator matrix, and adds a random error vector. In this work, we consider q-ary codes and restrict the Lee weight of the added error symbols. This leads to an increased error correction capability and a larger work factor for information-set decoding attacks. In particular, we consider codes over an extension field and use the one-Lee error channel, which restricts the error values to Lee weight one. For this channel model, generalized concatenated codes can achieve high error correction capabilities. We discuss the decoding of those codes and the possible gain for decoding beyond the guaranteed error correction capability.
In this letter, we present an approach to building a new generalized multistream spatial modulation system (GMSM), where the information is conveyed by the two active antennas with signal indices and using all possible active antenna combinations. The signal constellations associated with these antennas may have different sizes. In addition, four-dimensional hybrid frequency-phase modulated signals are utilized in GMSM. Examples of GMSM systems are given and computer simulation results are presented for transmission over Rayleigh and deep Nakagami- m flat-fading channels when maximum-likelihood detection is used. The presented results indicate a significant improvement of characteristics compared to the best-known similar systems.
Reed-Muller (RM) codes have recently regained some interest in the context of low latency communications and due to their relation to polar codes. RM codes can be constructed based on the Plotkin construction. In this work, we consider concatenated codes based on the Plotkin construction, where extended Bose-Chaudhuri-Hocquenghem (BCH) codes are used as component codes. This leads to improved code parameters compared to RM codes. Moreover, this construction is more flexible concerning the attainable code rates. Additionally, new soft-input decoding algorithms are proposed that exploit the recursive structure of the concatenation and the cyclic structure of the component codes. First, we consider the decoding of the cyclic component codes and propose a low complexity hybrid ordered statistics decoding algorithm. Next, this algorithm is applied to list decoding of the Plotkin construction. The proposed list decoding approach achieves near-maximum-likelihood performance for codes with medium lengths. The performance is comparable to state-of-the-art decoders, whereas the complexity is reduced.
Large-scale quantum computers threaten the security of today's public-key cryptography. The McEliece cryptosystem is one of the most promising candidates for post-quantum cryptography. However, the McEliece system has the drawback of large key sizes for the public key. Similar to other public-key cryptosystems, the McEliece system has a comparably high computational complexity. Embedded devices often lack the required computational resources to compute those systems with sufficiently low latency. Hence, those systems require hardware acceleration. Lately, a generalized concatenated code construction was proposed together with a restrictive channel model, which allows for much smaller public keys for comparable security levels. In this work, we propose a hardware decoder suitable for a McEliece system based on these generalized concatenated codes. The results show that those systems are suitable for resource-constrained embedded devices.