Institut für Systemdynamik - ISD
Refine
Document Type
- Conference Proceeding (54)
- Article (26)
- Doctoral Thesis (7)
- Master's Thesis (2)
- Patent (1)
- Report (1)
Keywords
- 360-degree coverage (1)
- 3D Extended Object Tracking (EOT) (2)
- Actuators (2)
- Adaptive (1)
- Adaptive birth density (1)
- Aerobic fermentation (1)
- Automated Docking of Vessels (1)
- Backstepping control (1)
- Beobachterentwurf (1)
- Bernoulli filter (1)
Institute
- Institut für Systemdynamik - ISD (91) (remove)
The trajectory tracking problem for a fully-actuated real-scaled surface vessel is addressed in this paper by designing a backstepping controller with a multivariable integral action, considering the thruster allocation problem. The performance and robustness of this controller are evaluated in simulation, taking into account environmental disturbance forces and modeling mismatch, using a docking maneuver as a reference trajectory. Furthermore, a comparison between the backstepping controller and a nonlinear position PID-Control with flatness based-feedforward is also analyzed.
The code-based McEliece cryptosystem is a promising candidate for post-quantum cryptography. The sender encodes a message, using a public scrambled generator matrix, and adds a random error vector. In this work, we consider q-ary codes and restrict the Lee weight of the added error symbols. This leads to an increased error correction capability and a larger work factor for information-set decoding attacks. In particular, we consider codes over an extension field and use the one-Lee error channel, which restricts the error values to Lee weight one. For this channel model, generalized concatenated codes can achieve high error correction capabilities. We discuss the decoding of those codes and the possible gain for decoding beyond the guaranteed error correction capability.
In this letter, we present an approach to building a new generalized multistream spatial modulation system (GMSM), where the information is conveyed by the two active antennas with signal indices and using all possible active antenna combinations. The signal constellations associated with these antennas may have different sizes. In addition, four-dimensional hybrid frequency-phase modulated signals are utilized in GMSM. Examples of GMSM systems are given and computer simulation results are presented for transmission over Rayleigh and deep Nakagami- m flat-fading channels when maximum-likelihood detection is used. The presented results indicate a significant improvement of characteristics compared to the best-known similar systems.
Reed-Muller (RM) codes have recently regained some interest in the context of low latency communications and due to their relation to polar codes. RM codes can be constructed based on the Plotkin construction. In this work, we consider concatenated codes based on the Plotkin construction, where extended Bose-Chaudhuri-Hocquenghem (BCH) codes are used as component codes. This leads to improved code parameters compared to RM codes. Moreover, this construction is more flexible concerning the attainable code rates. Additionally, new soft-input decoding algorithms are proposed that exploit the recursive structure of the concatenation and the cyclic structure of the component codes. First, we consider the decoding of the cyclic component codes and propose a low complexity hybrid ordered statistics decoding algorithm. Next, this algorithm is applied to list decoding of the Plotkin construction. The proposed list decoding approach achieves near-maximum-likelihood performance for codes with medium lengths. The performance is comparable to state-of-the-art decoders, whereas the complexity is reduced.
Large-scale quantum computers threaten the security of today's public-key cryptography. The McEliece cryptosystem is one of the most promising candidates for post-quantum cryptography. However, the McEliece system has the drawback of large key sizes for the public key. Similar to other public-key cryptosystems, the McEliece system has a comparably high computational complexity. Embedded devices often lack the required computational resources to compute those systems with sufficiently low latency. Hence, those systems require hardware acceleration. Lately, a generalized concatenated code construction was proposed together with a restrictive channel model, which allows for much smaller public keys for comparable security levels. In this work, we propose a hardware decoder suitable for a McEliece system based on these generalized concatenated codes. The results show that those systems are suitable for resource-constrained embedded devices.
Automotive computing applications like AI databases, ADAS, and advanced infotainment systems have a huge need for persistent memory. This trend requires NAND flash memories designed for extreme automotive environments. However, the error probability of NAND flash memories has increased in recent years due to higher memory density and production tolerances. Hence, strong error correction coding is needed to meet automotive storage requirements. Many errors can be corrected by soft decoding algorithms. However, soft decoding is very resource-intensive and should be avoided when possible. NAND flash memories are organized in pages, and the error correction codes are usually encoded page-wise to reduce the latency of random reads. This page-wise encoding does not reach the maximum achievable capacity. Reading soft information increases the channel capacity but at the cost of higher latency and power consumption. In this work, we consider cell-wise encoding, which also increases the capacity compared to page-wise encoding. We analyze the cell-wise processing of data in triple-level cell (TLC) NAND flash and show the performance gain when using Low-Density Parity-Check (LDPC) codes. In addition, we investigate a coding approach with page-wise encoding and cell-wise reading.
Large persistent memory is crucial for many applications in embedded systems and automotive computing like AI databases, ADAS, and cutting-edge infotainment systems. Such applications require reliable NAND flash memories made for harsh automotive conditions. However, due to high memory densities and production tolerances, the error probability of NAND flash memories has risen. As the number of program/erase cycles and the data retention times increase, non-volatile NAND flash memories' performance and dependability suffer. The read reference voltages of the flash cells vary due to these aging processes. In this work, we consider the issue of reference voltage adaption. The considered estimation procedure uses shallow neural networks to estimate the read reference voltages for different life-cycle conditions with the help of histogram measurements. We demonstrate that the training data for the neural networks can be enhanced by using shifted histograms, i.e., a training of the neural networks is possible based on a few measurements of some extreme points used as training data. The trained neural networks generalize well for other life-cycle conditions.
In many industrial applications a workpiece is continuously fed through a heating zone in order to reach a desired temperature to obtain specific material properties. Many examples of such distributed parameter systems exist in heavy industry and also in furniture production such processes can be found. In this paper, a real-time capable model for a heating process with application to industrial furniture production is modeled. As the model is intended to be used in a Model Predictive Control (MPC) application, the main focus is to achieve minimum computational runtime while maintaining a sufficient amount of accuracy. Thus, the governing Partial Differential Equation (PDE) is discretized using finite differences on a grid, specifically tailored to this application. The grid is optimized to yield acceptable accuracy with a minimum number of grid nodes such that a relatively low order model is obtained. Subsequently, an explicit Runge-Kutta ODE (Ordinary Differential Equation) solver of fourth order is compared to the Crank-Nicolson integration scheme presented in Weiss et al. (2022) in terms of runtime and accuracy. Finally, the unknown thermal parameters of the process are estimated using real-world measurement data that was obtained from an experimental setup. The final model yields acceptable accuracy while at the same time shows promising computation time, which enables its use in an MPC controller.
The trajectory tracking problem for a real-scaled fully-actuated surface vessel is addressed in this paper. A nonlinear model predictive control (NMPC) scheme was designed to track a reference trajectory, considering state and input constraints, and environmental disturbances, which were assumed to be constant over the prediction horizon. The controller was tested by performing docking maneuvers using the real-scaled research vessel from the University of Applied Sciences Konstanz at the Rhine river in Germany. A comparison between the experimental results and the simulated ones was analyzed to validate the NMPC controller.
This paper presents a modeling approach of an industrial heating process where a stripe-shaped workpiece is heated up to a specific temperature by applying hot air through a nozzle. The workpiece is moving through the heating zone and is considered to be of infinite length. The speed of the substrate is varying over time. The derived model is supposed to be computationally cheap to enable its use in a model-based control setting. We start by formulating the governing PDE and the corresponding boundary conditions. The PDE is then discretized on a spatial grid using finite differences and two different integration schemes, explicit and implicit, are derived. The two models are evaluated in terms of computational effort and accuracy. It turns out that the implicit approach is favorable for the regarded process. We optimize the grid of the model to achieve a low number of grid nodes while maintaining a sufficient amount of accuracy. Finally, the thermodynamical parameters are optimized in order to fit the model's output to real-world data that was obtained by experiments.