Peer reviewed Publikation in Master Journal List
Refine
Year of publication
Document Type
- Article (125)
- Conference Proceeding (1)
Keywords
- (Strict) sign-regularity (1)
- 1D-CNN (1)
- 3D urban planning (1)
- Aboriginal people (1)
- Accelerometer (1)
- Accelerometer calibration (1)
- Actuators (1)
- Adivasi (1)
- Adolescent idiopathic scoliosis (1)
- Aerobic fermentation (1)
Institute
- Fakultät Bauingenieurwesen (8)
- Fakultät Informatik (3)
- Fakultät Maschinenbau (1)
- Fakultät Wirtschafts-, Kultur- und Rechtswissenschaften (12)
- Institut für Angewandte Forschung - IAF (22)
- Institut für Optische Systeme - IOS (7)
- Institut für Strategische Innovation und Technologiemanagement - IST (5)
- Institut für Systemdynamik - ISD (26)
- Institut für angewandte Thermo- und Fluiddynamik - IATF (2)
- Konstanzer Institut für Prozesssteuerung - KIPS (1)
Carbon fiber-epoxy laminates are used in aerospace manufacturing, e.g. as substrates for solar cells of satellites. Commonly, fibers or fibermats are impregnated with epoxy resin and placed in the required orientation. During subsequent curing, the resin molecules are crosslinked. Cured parts are characterized by their glass transition temperature (Tg). It has been observed that Tg of epoxy matrix resin vary with recorded absolute air humidity during wet fiber placement manufacturing. Based on the production data of a series production of 203 carbon fiber laminates for space application, an empirical linear relationship between the absolute air humidity at the beginning of each production day and the observed glass transition temperature of the fully cured laminate is formulated and validated. The empirical equation describes a linear decrease of achievable glass transition temperature with increasing absolute air humidity. The quantitative nature of the results encourages straightforward practical application to determine the maximum achievable Tg for given production conditions.
Battery power is crucial for wearable devices as it ensures continuous operation, which is critical for real-time health monitoring and emergency alerts. One solution for long-lasting monitoring is energy harvesting systems. Ensuring a consistent energy supply from variable sources for reliable device performance is a major challenge. Additionally, integrating energy harvesting components without compromising the wearability, comfort, and esthetic design of healthcare devices presents a significant bottleneck. Here, we show that with a meticulous design using small and highly efficient photovoltaic (PV) panels, compact thermoelectric (TEG) modules, and two ultra-low-power BQ25504 DC-DC boost converters, the battery life can increase from 9.31 h to over 18 h. The parallel connection of boost converters at two points of the output allows both energy sources to individually achieve maximum power point tracking (MPPT) during battery charging. We found that under specific conditions such as facing the sun for more than two hours, the device became self-powered. Our results demonstrate the long-term and stable performance of the sensor node with an efficiency of 96%. Given the high-power density of solar cells outdoors, a combination of PV and TEG energy can harvest energy quickly and sufficiently from sunlight and body heat. The small form factor of the harvesting system and the environmental conditions of particular occupations such as the oil and gas industry make it suitable for health monitoring wearables worn on the head, face, or wrist region, targeting outdoor workers.
In this brief, trajectory tracking for a fully actuated surface vessel while performing automated docking is addressed. Environmental disturbances, integral action, as well as physical actuator quantities are directly integrated into the approach, avoiding the need for additional control allocation. By employing a backstepping design, uniform local exponential stability is proven. The performance of the controller is demonstrated by full-scale experiments. Moreover, a comparison between the physical experiments and simulations is provided.
Apnea is a sleep disorder characterized by breathing interruptions during sleep, impacting cardiorespiratory function and overall health. Traditional diagnostic methods, like polysomnography (PSG), are unobtrusive, leading to noninvasive monitoring. This study aims to develop and validate a novel sleep monitoring system using noninvasive sensor technology to estimate cardiorespiratory parameters and detect sleep apnea. We designed a seamless monitoring system integrating noncontact force-sensitive resistor sensors to collect ballistocardiogram signals associated with cardiorespiratory activity. We enhanced the sensor’s sensitivity and reduced the noise by designing a new concept of edge-measuring sensor using a hemisphere dome and mechanical hanger to distribute the force and mechanically amplify the micromovement caused by cardiac and respiration activities. In total, we deployed three edge-measuring sensors, two deployed under the thoracic and one under the abdominal regions. The system is supported with onboard signal preprocessing in multiple physical layers deployed under the mattress. We collected the data in four sleeping positions from 16 subjects and analyzed them using ensemble empirical mode decomposition (EMD) to avoid frequency mixing. We also developed an adaptive thresholding method to identify sleep apnea. The error was reduced to 3.98 and 1.43 beats/min (BPM) in heart rate (HR) and respiration estimation, respectively. The apnea was detected with an accuracy of 87%. We optimized the system such that only one edge-measuring sensor can measure the cardiorespiratory parameters. Such a reduction in the complexity and simplification of the instruction of use shows excellent potential for in-home and continuous monitoring.
We quantify the effects of GATT/WTO membership on trade and welfare. Using an extensive database covering manufacturing trade for 186 countries over the period 1980–2016, we find that the average partial equilibrium impact of GATT/WTO membership on trade among member countries is large, positive, and significant. We contribute to the literature by estimating country-specific estimates and find them to vary widely across the countries in our sample with poorer members benefitting more. Using these estimates, we simulate the general equilibrium effects of GATT/WTO on welfare, which are sizable and heterogeneous across members. We show that countries not experiencing positive trade effects from joining GATT/WTO can still gain in terms of welfare, due to lower import prices and higher export demand.
While driving, stress is caused by situations in which the driver estimates their ability to manage the driving demands as insufficient or loses the capability to handle the situation. This leads to increased numbers of driver mistakes and traffic violations. Additional stressing factors are time pressure, road conditions, or dislike for driving. Therefore, stress affects driver and road safety. Stress is classified into two categories depending on its duration and the effects on the body and psyche: short-term eustress and constantly present distress, which causes degenerative effects. In this work, we focus on distress. Wearable sensors are handy tools for collecting biosignals like heart rate, activity, etc. Easy installation and non-intrusive nature make them convenient for calculating stress. This study focuses on the investigation of stress and its implications. Specifically, the research conducts an analysis of stress within a select group of individuals from both Spain and Germany. The primary objective is to examine the influence of recognized psychological factors, including personality traits such as neuroticism, extroversion, psychoticism, stress and road safety. The estimation of stress levels was accomplished through the collection of physiological parameters (R-R intervals) using a Polar H10 chest strap. We observed that personality traits, such as extroversion, exhibited similar trends during relaxation, with an average heart rate 6% higher in Spain and 3% higher in Germany. However, while driving, introverts, on average, experienced more stress, with rates 4% and 1% lower than extroverts in Spain and Germany, respectively.
Study design:
Retrospective, mono-centric cohort research study.
Objectives:
The purpose of this study is to validate a novel artificial intelligence (AI)-based algorithm against human-generated ground truth for radiographic parameters of adolescent idiopathic scoliosis (AIS).
Methods:
An AI-algorithm was developed that is capable of detecting anatomical structures of interest (clavicles, cervical, thoracic, lumbar spine and sacrum) and calculate essential radiographic parameters in AP spine X-rays fully automatically. The evaluated parameters included T1-tilt, clavicle angle (CA), coronal balance (CB), lumbar modifier, and Cobb angles in the proximal thoracic (C-PT), thoracic, and thoracolumbar regions. Measurements from 2 experienced physicians on 100 preoperative AP full spine X-rays of AIS patients were used as ground truth and to evaluate inter-rater and intra-rater reliability. The agreement between human raters and AI was compared by means of single measure Intra-class Correlation Coefficients (ICC; absolute agreement; .75 rated as excellent), mean error and additional statistical metrics.
Results:
The comparison between human raters resulted in excellent ICC values for intra- (range: .97-1) and inter-rater (.85-.99) reliability. The algorithm was able to determine all parameters in 100% of images with excellent ICC values (.78-.98). Consistently with the human raters, ICC values were typically smallest for C-PT (eg, rater 1A vs AI: .78, mean error: 4.7°) and largest for CB (.96, -.5 mm) as well as CA (.98, .2°).
Conclusions:
The AI-algorithm shows excellent reliability and agreement with human raters for coronal parameters in preoperative full spine images. The reliability and speed offered by the AI-algorithm could contribute to the efficient analysis of large datasets (eg, registry studies) and measurements in clinical practice.
Cities around the world are facing the implications of a changing climate as an increasingly pressing issue. The negative effects of climate change are already being felt today. Therefore, adaptation to these changes is a mission that every city must master. Leading practices worldwide demonstrate various urban efforts on climate change adaptation (CCA) which are already underway. Above all, the integration of climate data, remote sensing, and in situ data is key to a successful and measurable adaptation strategy. Furthermore, these data can act as a timely decision support tool for municipalities to develop an adaptation strategy, decide which actions to prioritize, and gain the necessary buy-in from local policymakers. The implementation of agile data workflows can facilitate the integration of climate data into climate-resilient urban planning. Due to local specificities, (supra)national, regional, and municipal policies and (by) laws, as well as geographic and related climatic differences worldwide, there is no single path to climate-resilient urban planning. Agile data workflows can support interdepartmental collaboration and, therefore, need to be integrated into existing management processes and government structures. Agile management, which has its origins in software development, can be a way to break down traditional management practices, such as static waterfall models and sluggish stage-gate processes, and enable an increased level of flexibility and agility required when urgent. This paper presents the findings of an empirical case study conducted in cooperation with the City of Constance in southern Germany, which is pursuing a transdisciplinary and trans-sectoral co-development approach to make management processes more agile in the context of climate change adaptation. The aim is to present a possible way of integrating climate data into CCA planning by changing the management approach and implementing a toolbox for low-threshold access to climate data. The city administration, in collaboration with the University of Applied Sciences Constance, the Climate Service Center Germany (GERICS), and the University of Stuttgart, developed a co-creative and participatory project, CoKLIMAx, with the objective of integrating climate data into administrative processes in the form of a toolbox. One key element of CoKLIMAx is the involvement of the population, the city administration, and political decision-makers through targeted communication and regular feedback loops among all involved departments and stakeholder groups. Based on the results of a survey of 72 administrative staff members and a literature review on agile management in municipalities and city administrations, recommendations on a workflow and communication structure for cross-departmental strategies for resilient urban planning in the City of Constance were developed.
AbstractSanctions encompass a wide set of policy instruments restricting cross‐border economic activities. In this paper, we study how different types of sanctions affect the export behavior of firms to the targeted countries. We combine Danish register data, including information on firm‐destination‐specific exports, with information on sanctions imposed by Denmark from the Global Sanctions Database. Our data allow us to study firms' export behavior in 62 sanctioned countries, amounting to a total of 453 country‐years with sanctions over the period 2000–2015. Methodologically, we apply a two‐stage estimation strategy to properly account for multilateral resistance terms. We find that, on average, sanctions lead to a significant reduction in firms' destination‐specific exports and a significant increase in firms' probability to exit the destination. Next, we study heterogeneity in the effects of sanctions across (i) sanction types and sanction packages, (ii) the objectives of sanctions, and (iii) countries subject to sanctions. Results confirm that the effects of sanctions on firms' export behavior vary considerably across these three dimensions.
Background: Polysomnography (PSG) is the gold standard for detecting obstructive sleep apnea (OSA). However, this technique has many disadvantages when using it outside the hospital or for daily use. Portable monitors (PMs) aim to streamline the OSA detection process through deep learning (DL).
Materials and methods: We studied how to detect OSA events and calculate the apnea-hypopnea index (AHI) by using deep learning models that aim to be implemented on PMs. Several deep learning models are presented after being trained on polysomnography data from the National Sleep Research Resource (NSRR) repository. The best hyperparameters for the DL architecture are presented. In addition, emphasis is focused on model explainability techniques, concretely on Gradient-weighted Class Activation Mapping (Grad-CAM).
Results: The results for the best DL model are presented and analyzed. The interpretability of the DL model is also analyzed by studying the regions of the signals that are most relevant for the model to make the decision. The model that yields the best result is a one-dimensional convolutional neural network (1D-CNN) with 84.3% accuracy.
Conclusion: The use of PMs using machine learning techniques for detecting OSA events still has a long way to go. However, our method for developing explainable DL models demonstrates that PMs appear to be a promising alternative to PSG in the future for the detection of obstructive apnea events and the automatic calculation of AHI.