Promotionskolleg
Refine
Year of publication
Document Type
- Conference Proceeding (50)
- Doctoral Thesis (31)
- Article (25)
- Part of a Book (3)
- Working Paper (3)
Language
- English (80)
- German (30)
- Multiple languages (2)
Keywords
- 360-degree coverage (1)
- 3D Extended Object Tracking (1)
- 3D Extended Object Tracking (EOT) (2)
- 3D shape tracking (1)
- ADAM (1)
- Action Design Research (1)
- Adaptive birth density (1)
- Adoption (1)
- Agrarprodukt (1)
- Analyse (1)
Institute
- Fakultät Bauingenieurwesen (1)
- Fakultät Elektrotechnik und Informationstechnik (1)
- Fakultät Informatik (6)
- Fakultät Maschinenbau (5)
- Fakultät Wirtschafts-, Kultur- und Rechtswissenschaften (6)
- Institut für Angewandte Forschung - IAF (1)
- Institut für Optische Systeme - IOS (6)
- Institut für Strategische Innovation und Technologiemanagement - IST (10)
- Institut für Systemdynamik - ISD (34)
- Institut für angewandte Thermo- und Fluiddynamik - IATF (1)
Torsionsschwingungen von Radsätzen mit torsionssteif gekoppelten Radkörpern können beträchtliche Torsionsmomente in der Radsatzwelle von Schienenfahrzeugen verursachen. Die Anregung der Schwingung erfolgt durch einen mit zunehmender Gleitgeschwindigkeit abfallenden Kraftschluss im Rad-Schiene-Kontakt. Messergebnisse zeigen, dass die entstehenden dynamischen Torsionsmomente in der Radsatzwelle ein Vielfaches des quasistatischen Nennmoments betragen können.
Die vorliegende Arbeit beschreibt verschiedene Berechnungsverfahren die realistische, maximale, dynamische Torsionsmomente der Radsatzwelle ermitteln. Außerdem werden Konstruktionspotentiale identifiziert, die das dynamische Torsionsmaximum reduzieren. Auf Grundlage der Rad-Schiene-Kontaktmechanik und der Analyse von Messdaten werden einerseits kritische, schwingungsanregende Kraftschlussfunktionen ermittelt und andererseits die relevanten Eigenfrequenzen der Antriebssysteme festgestellt. Die modellierten Mehrkörpersysteme ermöglichen durch Modalanalysen ein tieferes Verständnis der Schwingungssysteme im Hinblick auf die zu untersuchende Radsatz-Torsions-schwingung. Parameterstudien und Stabilitätsuntersuchungen zeigen die Einflüsse auf die Dämpfung und des damit verbundenen dynamischen Torsionsmoments, wodurch mehrere Optimierungsmaß-nahmen aufgezeigt werden können. Der entwickelte Berechnungsansatz führt schließlich durch gezielte Vereinfachungen auf ein analytisches Verfahren, welches im Vergleich zu den numerischen Berechnungen akzeptable Ergebnisse hinsichtlich des dynamischen Torsionsmaximums erreicht und in der Vorauslegung von Radsätzen und Antriebssystemen verwendet werden kann.
Given the increasing demand for application development and process automation, Low-Code Development Platforms (LCDPs) have become highly relevant in recent years. However, the lack of familiarity with the implementation and application of LCDP in organizations poses a challenge. This publication therefore aims to shed light on the essential organizational capabilities that companies must master to overcome this obstacle. Using action design research, this study develops a model-based framework of 21 organizational capabilities for successful LCDP adoption. It underscores the importance of conceptual development as a prerequisite for effective management and long-term application of the technology. Furthermore, it emphasizes the importance of considering both technical and social aspects of the LCDP information system. The findings contribute to academia by providing a model-based capability framework, which serves as a structure for driving future research. Moreover, practitioners benefit from a practice-oriented and evaluated summary of initialization tasks and capabilities required for successful adoption.
Digital transformation urges organizations to strategically invest in information technology (IT) to keep up with the competition. The responsible strive to choose the right digital initiatives that can maximize the benefit. Thereby, they still struggle to communicate IT costs and demonstrate the business value of IT. The goal of this paper is to get a deeper understanding of the perception of IT costs and business value and support their effective communication. Applying the focus group method, we analyzed in four interview sessions that stakeholders perceive IT costs and business value differently and that a common perception serves as the basis of communication. We then identified and evaluated 20 success factors to establish effective communication of IT costs and IT business value. Hence, this paper enables a better understanding of the perception and the operationalization of effective communication mainly between business and IT executives regarding IT costs and IT business value.
Digitalization requires organizations to strategically invest in information technology (IT). As a result, the costs associated with IT in companies are rising and technological progress changes the setting for IT management. This poses challenges for IT managers to ensure spend-efficiency and manage IT costs transparently. However, no current literature review gives an overview of how IT cost management (ITCM) research dealt with past transformations. This paper aims to investigate ITCM concepts considering their historical context. It then derives implications for the digital age and identifies future research fields. The historical literature review reveals that ITCM research evolved with technological advances and the target to manage all IT-related costs and evaluate the impact of IT spend. However, the presented concepts lack consideration of current changes that hamper spend-efficiency and strategic decisions. Hence, this paper enables future research to address the identified research gaps. Additionally, practitioners gain awareness of how they can benefit from developed ITCM concepts.
The problem of controlling autonomous surface vessels in an energy-optimal way is important for the electrification of maritime systems and is currently being investigated by many researchers. In this paper, we use numerical optimal control to plan an energy-optimal docking trajectory in river currents and show that it can save energy compared to other widespread planning approaches. An optimal control problem including a detailed vessel model is defined, transcribed into a nonlinear optimization problem via direct multiple shooting, and solved using a homotopy procedure. The optimal solution is compared to a geometrical path planning approach with path-velocity decomposition. The results of this comparison show that prescribing a path with fixed vessel orientation leads to very suboptimal results. Further, we demonstrate how shrinking horizon MPC can control the vessel in an energy-optimal way even under severe disturbances, by replanning the energy-optimal trajectories in real-time. We believe that energy-optimal MPC could become a key technology for the electrification of maritime systems.
IT-Kosten machen heute einen immer größeren Anteil an den Gesamtkosten von Unternehmen aus. Die Verantwortlichen sind aufgefordert die IT-Kosten zu senken oder zumindest ein effizientes Management sicherzustellen. Oftmals fehlt es dafür an Transparenz und Verständnis für diese Ausgaben. Die Analyse der IT-Kostentreiber ermöglicht ein tieferes Verständnis der Ursachen und Auswirkungen strategischer Entscheidungen. Dieser Beitrag zielt darauf ab, die strategischen IT-Kostentreiber bezüglich des Wirkungshorizonts und des Entscheidungsortes zu analysieren. Die durchgeführte Delphi-Studie zeigt, dass Entscheidungen über diese Kostentreiber größtenteils mittel- bis langfristige Auswirkungen haben. Zudem wird deutlich, dass die IT-Abteilung zwar in den Entscheidungsprozess eingebunden ist, während die finalen Entscheidungen häufig stärker im Fachbereich liegen. Zusammenarbeit und effektive Kommunikation sind deshalb entscheidend und die Verantwortung für IT-Kosten sollte von allen EntscheidungsträgerInnen getragen werden. Dieser Beitrag erweitert die Forschung im IT-Kostenmanagement und sensibilisiert PraktikerInnen für Kostenbeeinflussungshebel und die strategische Diskussion über IT-Kosten und das Wertversprechen der IT.
Incremental one-class learning using regularized null-space training for industrial defect detection
(2024)
One-class incremental learning is a special case of class-incremental learning, where only a single novel class is incrementally added to an existing classifier instead of multiple classes. This case is relevant in industrial defect detection scenarios, where novel defects usually appear during operation. Existing rolled-out classifiers must be updated incrementally in this scenario with only a few novel examples. In addition, it is often required that the base classifier must not be altered due to approval and warranty restrictions. While simple finetuning often gives the best performance across old and new classes, it comes with the drawback of potentially losing performance on the base classes (catastrophic forgetting [1]). Simple prototype approaches [2] work without changing existing weights and perform very well when the classes are well separated but fail dramatically when not. In theory, null-space training (NSCL) [3] should retain the basis classifier entirely, as parameter updates are restricted to the null space of the network with respect to existing classes. However, as we show, this technique promotes overfitting in the case of one-class incremental learning. In our experiments, we found that unconstrained weight growth in null space is the underlying issue, leading us to propose a regularization term (R-NSCL) that penalizes the magnitude of amplification. The regularization term is added to the standard classification loss and stabilizes null-space training in the one-class scenario by counteracting overfitting. We test the method’s capabilities on two industrial datasets, namely AITEX and MVTec, and compare the performance to state-of-the-art algorithms for class-incremental learning.
Particularly for manufactured products subject to aesthetic evaluation, the industrial manufacturing process must be monitored, and visual defects detected. For this purpose, more and more computer vision-integrated inspection systems are being used. In optical inspection based on cameras or range scanners, only a few examples are typically known before novel examples are inspected. Consequently, no large data set of non-defective and defective examples could be used to train a classifier, and methods that work with limited or weak supervision must be applied. For such scenarios, I propose new data-efficient machine learning approaches based on one-class learning that reduce the need for supervision in industrial computer vision tasks. The developed novelty detection model automatically extracts features from the input images and is trained only on available non-defective reference data. On top of the feature extractor, a one-class classifier based on recent developments in deep learning is placed. I evaluate the novelty detector in an industrial inspection scenario and state-of-the-art benchmarks from the machine learning community. In the second part of this work, the model gets improved by using a small number of novel defective examples, and hence, another source of supervision gets incorporated. The targeted real-world inspection unit is based on a camera array and a flashing light illumination, allowing inline capturing of multichannel images at a high rate. Optionally, the integration of range data, such as laser or Lidar signals, is possible by using the developed targetless data fusion method.
IT-Compliance in KMU
(2023)