## 500 Naturwissenschaften und Mathematik

### Refine

#### Document Type

- Article (11)
- Conference Proceeding (8)
- Book (1)
- Doctoral Thesis (1)
- Preprint (1)

#### Language

- English (22)

#### Keywords

#### Institute

The main challenge in Bayesian models is to determine the posterior for the model parameters. Already, in models with only one or few parameters, the analytical posterior can only be determined in special settings. In Bayesian neural networks, variational inference is widely used to approximate difficult-to-compute posteriors by variational distributions. Usually, Gaussians are used as variational distributions (Gaussian-VI) which limits the quality of the approximation due to their limited flexibility. Transformation models on the other hand are flexible enough to fit any distribution. Here we present transformation model-based variational inference (TM-VI) and demonstrate that it allows to accurately approximate complex posteriors in models with one parameter and also works in a mean-field fashion for multi-parameter models like neural networks.

In this article, the collection of classes of matrices presented in [J. Garloff, M. Adm, ad J. Titi, A survey of classes of matrices possessing the interval property and related properties, Reliab. Comput. 22:1-14, 2016] is continued. That is, given an interval of matrices with respect to a certain partial order, it is desired to know whether a special property of the entire matrix interval can be inferred from some of its element matrices lying on the vertices of the matrix interval. The interval property of some matrix classes found in the literature is presented, and the interval property of further matrix classes including the ultrametric, the conditionally positive semidefinite, and the infinitely divisible matrices is given for the first time. For the inverse M-matrices the cardinality of the required set of vertex matrices known so far is significantly reduced.

Positive systems play an important role in systems and control theory and have found applications in multiagent systems, neural networks, systems biology, and more. Positive systems map the nonnegative orthant to itself (and also the non-positive orthant to itself). In other words, they map the set of vectors with zero sign variation to itself. In this article, discrete-time linear systems that map the set of vectors with up to k-1 sign variations to itself are introduced. For the special case k = 1 these reduce to discrete-time positive linear systems. Properties of these systems are analyzed using tools from the theory of sign-regular matrices. In particular, it is shown that almost every solution of such systems converges to the set of vectors with up to k-1 sign variations. It is also shown that these systems induce a positive dynamics of k-dimensional parallelotopes.

Matrix methods for the computation of bounds for the range of a complex polynomial and its modulus over a rectangular region in the complex plane are presented. The approach relies on the expansion of the given polynomial into Bernstein polynomials. The results are extended to multivariate complex polynomials and rational functions.

The class of square matrices of order n having a negative determinant and all their minors up to order n-1 nonnegative is considered. A characterization of these matrices is presented which provides an easy test based on the Cauchon algorithm for their recognition. Furthermore, the maximum allowable perturbation of the entry in position (2,2) such that the perturbed matrix remains in this class is given. Finally, it is shown that all matrices lying between two matrices of this class with respect to the checkerboard ordering are contained in this class, too.

In this paper, rectangular matrices whose minors of a given order have the same strict sign are considered and sufficient conditions for their recognition are presented. The results are extended to matrices whose minors of a given order have the same sign or are allowed to vanish. A matrix A is called oscillatory if all its minors are nonnegative and there exists a positive integer k such that A^k has all its minors positive. As a generalization, a new type of matrices, called oscillatory of a specific order, is introduced and some of their properties are investigated.

Probabilistic Deep Learning
(2020)

Probabilistic Deep Learning is a hands-on guide to the principles that support neural networks. Learn to improve network performance with the right distribution for different data types, and discover Bayesian variants that can state their own uncertainty to increase accuracy. This book provides easy-to-apply code and uses popular frameworks to keep you focused on practical applications.

At present, the majority of the proposed Deep Learning (DL) methods provide point predictions without quantifying the model's uncertainty. However, a quantification of the reliability of automated image analysis is essential, in particular in medicine when physicians rely on the results for making critical treatment decisions. In this work, we provide an entire framework to diagnose ischemic stroke patients incorporating Bayesian uncertainty into the analysis procedure. We present a Bayesian Convolutional Neural Network (CNN) yielding a probability for a stroke lesion on 2D Magnetic Resonance (MR) images with corresponding uncertainty information about the reliability of the prediction. For patient-level diagnoses, different aggregation methods are proposed and evaluated, which combine the individual image-level predictions. Those methods take advantage of the uncertainty in the image predictions and report model uncertainty at the patient-level. In a cohort of 511 patients, our Bayesian CNN achieved an accuracy of 95.33% at the image-level representing a significant improvement of 2% over a non-Bayesian counterpart. The best patient aggregation method yielded 95.89% of accuracy. Integrating uncertainty information about image predictions in aggregation models resulted in higher uncertainty measures to false patient classifications, which enabled to filter critical patient diagnoses that are supposed to be closer examined by a medical doctor. We therefore recommend using Bayesian approaches not only for improved image-level prediction and uncertainty estimation but also for the detection of uncertain aggregations at the patient-level.

Mapping of tree seedlings is useful for tasks ranging from monitoring natural succession and regeneration to effective silvicultural management. Development of methods that are both accurate and cost-effective is especially important considering the dramatic increase in tree planting that is required globally to mitigate the impacts of climate change. The combination of high-resolution imagery from unmanned aerial vehicles and object detection by convolutional neural networks (CNNs) is one promising approach. However, unbiased assessments of these models and methods to integrate them into geospatial workflows are lacking. In this study, we present a method for rapid, large-scale mapping of young conifer seedlings using CNNs applied to RGB orthomosaic imagery. Importantly, we provide an unbiased assessment of model performance by using two well-characterised trial sites together containing over 30,000 seedlings to assemble datasets with a high level of completeness. Our results showed CNN-based models trained on two sites detected seedlings with sensitivities of 99.5% and 98.8%. False positives due to tall weeds at one site and naturally regenerating seedlings of the same species led to slightly lower precision of 98.5% and 96.7%. A model trained on examples from both sites had 99.4% sensitivity and precision of 97%, showing applicability across sites. Additional testing showed that the CNN model was able to detect 68.7% of obscured seedlings missed during the initial annotation of the imagery but present in the field data. Finally, we demonstrate the potential to use a form of weakly supervised training and a tile-based processing chain to enhance the accuracy and efficiency of CNNs applied to large, high-resolution orthomosaics.

The expansion of a given multivariate polynomial into Bernstein polynomials is considered. Matrix methods for the calculation of the Bernstein expansion of the product of two polynomials and of the Bernstein expansion of a polynomial from the expansion of one of its partial derivatives are provided which allow also a symbolic computation.