600 Technik, Medizin, angewandte Wissenschaften
Refine
Document Type
- Article (18)
- Conference Proceeding (12)
- Master's Thesis (3)
- Bachelor Thesis (2)
- Part of a Book (2)
- Doctoral Thesis (2)
- Working Paper (2)
- Report (1)
- Study Thesis (1)
Keywords
- 1D-CNN (1)
- AAL (1)
- Abwärmenutzung (1)
- Accelerometer (1)
- Accelerometer sensor (1)
- Accelerometers (2)
- Alternative Energy Production (1)
- Apnea detection (1)
- Artificial intelligence models (1)
- Atmung (1)
Battery power is crucial for wearable devices as it ensures continuous operation, which is critical for real-time health monitoring and emergency alerts. One solution for long-lasting monitoring is energy harvesting systems. Ensuring a consistent energy supply from variable sources for reliable device performance is a major challenge. Additionally, integrating energy harvesting components without compromising the wearability, comfort, and esthetic design of healthcare devices presents a significant bottleneck. Here, we show that with a meticulous design using small and highly efficient photovoltaic (PV) panels, compact thermoelectric (TEG) modules, and two ultra-low-power BQ25504 DC-DC boost converters, the battery life can increase from 9.31 h to over 18 h. The parallel connection of boost converters at two points of the output allows both energy sources to individually achieve maximum power point tracking (MPPT) during battery charging. We found that under specific conditions such as facing the sun for more than two hours, the device became self-powered. Our results demonstrate the long-term and stable performance of the sensor node with an efficiency of 96%. Given the high-power density of solar cells outdoors, a combination of PV and TEG energy can harvest energy quickly and sufficiently from sunlight and body heat. The small form factor of the harvesting system and the environmental conditions of particular occupations such as the oil and gas industry make it suitable for health monitoring wearables worn on the head, face, or wrist region, targeting outdoor workers.
Die energetische Sanierung von Gebäuden ist von großer Relevanz, um die gesetzlichen Klimaziele zu erreichen. Die Methode des seriellen Sanierens spielt hierbei eine wichtige Rolle. Sie gilt als ganzheitliche Maßnahme zur energetischen Aufwertung von Bestandsgebäuden, durch die nicht nur die Gebäudehülle und die Anlagentechnik, wie etwa das Heizungssystem, effektiv verbessert werden, sondern auch eine Integration von Anlagen zur Strom- und Warmwasseraufbereitung erfolgt. Bei der seriellen Sanierung wird, in Anlehnung an die Industrie und an die modulare Bauweise, eine Vorfertigung der Fassaden-
und Dachelemente durchgeführt. Im Nachgang werden die einzelnen Bauelemente und Anlagen montiert bzw. installiert. Durch die Auslagerung der Produktion und durch die Vorfertigung der Elemente besteht das Potenzial, die Montagezeit und die damit verbundenen Einschränkungen vor Ort für die Bewohner deutlich zu reduzieren.
Apnea is a sleep disorder characterized by breathing interruptions during sleep, impacting cardiorespiratory function and overall health. Traditional diagnostic methods, like polysomnography (PSG), are unobtrusive, leading to noninvasive monitoring. This study aims to develop and validate a novel sleep monitoring system using noninvasive sensor technology to estimate cardiorespiratory parameters and detect sleep apnea. We designed a seamless monitoring system integrating noncontact force-sensitive resistor sensors to collect ballistocardiogram signals associated with cardiorespiratory activity. We enhanced the sensor’s sensitivity and reduced the noise by designing a new concept of edge-measuring sensor using a hemisphere dome and mechanical hanger to distribute the force and mechanically amplify the micromovement caused by cardiac and respiration activities. In total, we deployed three edge-measuring sensors, two deployed under the thoracic and one under the abdominal regions. The system is supported with onboard signal preprocessing in multiple physical layers deployed under the mattress. We collected the data in four sleeping positions from 16 subjects and analyzed them using ensemble empirical mode decomposition (EMD) to avoid frequency mixing. We also developed an adaptive thresholding method to identify sleep apnea. The error was reduced to 3.98 and 1.43 beats/min (BPM) in heart rate (HR) and respiration estimation, respectively. The apnea was detected with an accuracy of 87%. We optimized the system such that only one edge-measuring sensor can measure the cardiorespiratory parameters. Such a reduction in the complexity and simplification of the instruction of use shows excellent potential for in-home and continuous monitoring.
Unintrusive health monitoring systems is important when continuous monitoring of the patient vital signals is required. In this paper, signals obtained from accelerometers placed under a bed are processed with ballistocardiography algorithms and compared with synchronized electrocardiographic signals.
Cardiovascular diseases (CVD) are leading contributors to global mortality, necessitating advanced methods for vital sign monitoring. Heart Rate Variability (HRV) and Respiratory Rate, key indicators of cardiovascular health, are traditionally monitored via Electrocardiogram (ECG). However, ECG's obtrusiveness limits its practicality, prompting the exploration of Ballistocardiography (BCG) as a non-invasive alternative. BCG records the mechanical activity of the body with each heartbeat, offering a contactless method for HRV monitoring. Despite its benefits, BCG signals are susceptible to external interference and present a challenge in accurately detecting J-Peaks. This research uses advanced signal processing and deep learning techniques to overcome these limitations. Our approach integrates accelerometers for long-term BCG data collection during sleep, applying Discrete Wavelet Transforms (DWT) and Ensemble Empirical Mode Decomposition (EEMD) for feature extraction. The Bi-LSTM model, leveraging these features, enhances heartbeat detection, offering improved reliability over traditional methods. The study's findings indicate that the combined use of DWT, EEMD, and Bi-LSTM for J-Peak detection in BCG signals is effective, with potential applications in unobtrusive long-term cardiovascular monitoring. Our results suggest that this methodology could contribute to HRV monitoring, particularly in home settings, enhancing patient comfort and compliance.
This study investigates the application of Force Sensing Resistor (FSR) sensors and machine learning algorithms for non-invasive body position monitoring during sleep. Although reliable, traditional methods like Polysomnography (PSG) are invasive and unsuited for extended home-based monitoring. Our approach utilizes FSR sensors placed beneath the mattress to detect body positions effectively. We employed machine learning techniques, specifically Random Forest (RF), K-Nearest Neighbors (KNN), and XGBoost algorithms, to analyze the sensor data. The models were trained and tested using data from a controlled study with 15 subjects assuming various sleep positions. The performance of these models was evaluated based on accuracy and confusion matrices. The results indicate XGBoost as the most effective model for this application, followed by RF and KNN, offering promising avenues for home-based sleep monitoring systems.
The massive use of patient data for the training of artificial intelligence algorithms is common nowadays in medicine. In this scientific work, a statistical analysis of one of the most used datasets for the training of artificial intelligence models for the detection of sleep disorders is performed: sleep health heart study 2. This study focuses on determining whether the gender and age of the patients have a relevant influence to consider working with differentiated datasets based on these variables for the training of artificial intelligence models.
Accurate monitoring of a patient's heart rate is a key element in the medical observation and health monitoring. In particular, its importance extends to the identification of sleep-related disorders. Various methods have been established that involve sensor-based recording of physiological signals followed by automated examination and analysis. This study attempts to evaluate the efficacy of a non-invasive HR monitoring framework based on an accelerometer sensor specifically during sleep. To achieve this goal, the motion induced by thoracic movements during cardiac contractions is captured by a device installed under the mattress. Signal filtering techniques and heart rate estimation using the symlets6 wavelet are part of the implemented computational framework described in this article. Subsequent analysis indicates the potential applicability of this system in the prognostic domain, with an average error margin of approximately 3 beats per minute. The results obtained represent a promising advancement in non-invasive heart rate monitoring during sleep, with potential implications for improved diagnosis and management of cardiovascular and sleep-related disorders.
This paper compares two popular scripting implementations for hardware prototyping: Python scripts exe- cut from User-Space and C-based Linux-Driver processes executed from Kernel-Space, which can provide information to researchers when considering one or another in their implementations. Conclusions exhibit that deploying software scripts in the kernel space makes it possible to grant a certain quality of sensor information using a Raspberry Pi without the need for advanced real-time operational systems.
While driving, stress is caused by situations in which the driver estimates their ability to manage the driving demands as insufficient or loses the capability to handle the situation. This leads to increased numbers of driver mistakes and traffic violations. Additional stressing factors are time pressure, road conditions, or dislike for driving. Therefore, stress affects driver and road safety. Stress is classified into two categories depending on its duration and the effects on the body and psyche: short-term eustress and constantly present distress, which causes degenerative effects. In this work, we focus on distress. Wearable sensors are handy tools for collecting biosignals like heart rate, activity, etc. Easy installation and non-intrusive nature make them convenient for calculating stress. This study focuses on the investigation of stress and its implications. Specifically, the research conducts an analysis of stress within a select group of individuals from both Spain and Germany. The primary objective is to examine the influence of recognized psychological factors, including personality traits such as neuroticism, extroversion, psychoticism, stress and road safety. The estimation of stress levels was accomplished through the collection of physiological parameters (R-R intervals) using a Polar H10 chest strap. We observed that personality traits, such as extroversion, exhibited similar trends during relaxation, with an average heart rate 6% higher in Spain and 3% higher in Germany. However, while driving, introverts, on average, experienced more stress, with rates 4% and 1% lower than extroverts in Spain and Germany, respectively.