Refine
Document Type
- Conference Proceeding (5)
- Article (1)
- Report (1)
Has Fulltext
- no (7)
Keywords
- Actuators (1)
- Aktorik (1)
- Alterungsbeständigkeit (1)
- Data compression algorithms (1)
- Electromagnetic actuators (1)
- Fault diagnosis (2)
- Friction (1)
- Magnetantrieb (1)
- Parameter estimation (1)
- Preventive maintenance (1)
Institute
In this paper an approach towards databased fault diagnosis of linear electromagnetic actuators is presented. Time and time-frequency-domain methods were applied to extract fault related features from current and voltage measurements. The resulting features were transformed to enhance class separability using either Principal Component Analysis (PCA) or Optimal Transformation. Feature selection and dimensionality reduction was performed employing a modified Fisher-ratio. Fault detection was carried out using a Support-Vector-Machine classifier trained with randomly selected data subsets. Results showed, that not only the used feature sets (time-domain/time-frequency-domain) are crucial for fault detection and classification, but also feature pre-processing. PCA transformed time-domain features allow fault detection and classification without misclassification, relying on current and voltage measurements making two sensors necessary to generate the data. Optimal transformed time-frequency-domain features allow a misclassification free result as well, but as they are calculated from current measurements only, a dedicated voltage sensor is not necessary. Using those features is a promising alternative even for detecting purely supply voltage related faults.
An approach for an adaptive position-dependent friction estimation for linear electromagnetic actuators with altered characteristics is proposed in this paper. The objective is to obtain a friction model that can be used to describe different stages of aging of magnetic actuators. It is compared to a classical Stribeck friction model by means of model fit, sensitivity, and parameter correlation. The identifiability of the parameters in the friction model is of special interest since the model is supposed to be used for diagnostic and prognostic purposes. A method based on the Fisher information matrix is employed to analyze the quality of the model structure and the parameter estimates.
Intelligente Aktorik
(2017)
Extracting suitable features from acquired data to accurately depict the current health state of a system is crucial in data driven condition monitoring and prediction. Usually, analogue sensor data is sampled at rates far exceeding the Nyquist-rate containing substantial amounts of redundancies and noise, imposing high computational loads due to the subsequent and necessary feature processing chain (generation, dimensionality reduction, rating and selection). To overcome these problems, Compressed Sensing can be used to sample directly to a compressed space, provided the signal at hand and the employed compression/measurement system meet certain criteria. Theory states, that during this compression step enough information is conserved, such that a reconstruction of the original signal is possible with high probability. The proposed approach however does not rely on reconstructed data for condition monitoring purposes, but uses directly the compressed signal representation as feature vector. It is hence assumed that enough information is conveyed by the compression for condition monitoring purposes. To fuse the compressed coefficients into one health index that can be used as input for remaining useful life prediction algorithms and is limited to a reasonable range between 1 and 0, a logistic regression approach is used. Run-to-failure data of three translational electromagnetic actuators is used to demonstrate the health index generation procedure. A comparison to the time domain ground truth signals obtained from Nyquist sampled coil current measurements shows reasonable agreement. I.e. underlying wear-out phenomena can be reproduced by the proposed approach enabling further investigation of the application of prognostic methods.
One major realm of Condition Based Maintenance is finding features that reflect the current health state of the asset or component under observation. Most of the existing approaches are accompanied with high computational costs during the different feature processing phases making them infeasible in a real-world scenario. In this paper a feature generation method is evaluated compensating for two problems: (1) storing and handling large amounts of data and (2) computational complexity. Both aforementioned problems are existent e.g. when electromagnetic solenoids are artificially aged and health indicators have to be extracted or when multiple identical solenoids have to be monitored. To overcome those problems, Compressed Sensing (CS), a new research field that keeps constantly emerging into new applications, is employed. CS is a data compression technique allowing original signal reconstruction with far fewer samples than Shannon-Nyquist dictates, when some criteria are met. By applying this method to measured solenoid coil current, raw data vectors can be reduced to a way smaller set of samples that yet contain enough information for proper reconstruction. The obtained CS vector is also assumed to contain enough relevant information about solenoid degradation and faults, allowing CS samples to be used as input to fault detection or remaining useful life estimation routines. The paper gives some results demonstrating compression and reconstruction of coil current measurements and outlines the application of CS samples as condition monitoring data by determining deterioration and fault related features. Nevertheless, some unresolved issues regarding information loss during the compression stage, the design of the compression method itself and its influence on diagnostic/prognostic methods exist.