### Refine

#### Document Type

- Conference Proceeding (5)
- Article (1)
- Master's Thesis (1)

#### Has Fulltext

- no (7)

#### Keywords

#### Institute

Kapitel 2 der vorliegenden Arbeit beschreibt die theoretischen Grundlagen optimaler Regelung und die unterschiedlichen Methoden des Pfadintegral Frameworks zur Reglersynthese. Zudem wird ein Ansatz zur Erweiterung des stochastischen NMPC dargestellt, sodass eine Adaption an eine real vorliegende Systemdynamik erfolgt. Weiter wird eine Methode entwickelt und beschrieben, welche die Effizienz des Algorithmus stark erhöht.
In Kapitel 3 wird aufgezeigt, wie die Pfadintegral Regelung dazu genutzt wird ein Furuta Pendel aufzuschwingen.
In Kapitel 4 werden die Algorithmen zur Lösung unterschiedlicher Problemstellungen im Kontext eines Forschungsboot appliziert. So wird unter anderem gezeigt, wie ein Pfadintegral Regelungsalgorithmus genutzt werden kann, um autonom mit dem Forschungsboot Solgenia am Steg der HTWG Konstanz anzulegen.
Abschließend wird in Kapitel 5 ein Fazit aus den Ergebnissen gezogen, diese eingeordnet und ein Ausblick auf weitere mögliche Arbeiten gegeben.

This paper presents the swinging up and stabilization control of a Furuta pendulum using the recently published nonlinear Model Predictive Path Integral (MPPI) approach. This algorithm is based on a path integral over stochastic trajectories and can be parallelized easily. The controller parameters are tuned offline regarding the nonlinear system dynamics and simulations. Constraints in terms of state and input are taken into account in the cost function. The presented approach sequentially computes an optimal control sequence that minimizes this optimal control problem online. The control strategy has been tested in full-scale experiments using a pendulum prototype. The investigated MPPI controller has demonstrated excellent performance in simulation for the swinging up and stabilizing task. In order to also achieve outstanding performance in a real-world experiment using a controller with limited computing power, a linear quadratic controller (LQR) is designed for the stabilization task. In this paper, the determination of the controller parameters for the MPPI algorithm is described in detail. Further, a discussion treats the advantages of the nonlinear MPPI control.

Docking Control of a Fully-Actuated Autonomous Vessel using Model Predictive Path Integral Control
(2022)

This paper presents the docking control of an autonomous vessel using the nonlinear Model Predictive Path Integral (MPPI) approach. This algorithm is based on a path integral over stochastic trajectories and can be parallelized easily. The controller parameters are tuned offline using knowledge of the system and simulations, including nonlinear state and disturbance observer. The cost function implicitly contains information regarding the surrounding of the docking position. This approach allows continuous optimization of the trajectory with respect to the system state, disturbance state and actuator dynamics. The control strategy has been tested in full-scale experiments using the solar research vessel Solgenia. The investigated MPPI controller has demonstrated excellent performance in both, simulation and real-world experiments. This paper addresses the question of how the MPPI algorithm can be applied to dock a fully-actuated vessel and what benefits its application achieves.

In this paper, a systematic comparison of three different advanced control strategies for automated docking of a vessel is presented. The controllers are automatically tuned offline by applying an optimization process using simulations of the whole system including trajectory planner and state and disturbance observer. Then investigations are conducted subject to performance and robustness using Monte Carlos simulation with varying model parameters and disturbances. The control strategies have also been tested in full scale experiments using the solar research vessel Solgenia. The investigated control strategies all have demonstrated very good performance in both, simulation and real world experiments. Videos are available under https://www.htwg-konstanz.de/forschung-und-transfer/institute-und-labore/isd/regelungstechnik/videos/

In this paper, a novel feature-based sampling strategy for nonlinear Model Predictive Path Integral (MPPI) control is presented. Using the MPPI approach, the optimal feedback control is calculated by solving a stochastic optimal control (OCP) problem online by evaluating the weighted inference of sampled stochastic trajectories. While the MPPI algorithm can be excellently parallelized, the closed-loop performance strongly depends on the information quality of the sampled trajectories. To draw samples, a proposal density is used. The solver’s and thus, the controller’s performance is of high quality if the sampled trajectories drawn from this proposal density are located in low-cost regions of state-space. In classical MPPI control, the explored state-space is strongly constrained by assumptions that refer to the control value’s covariance matrix, which are necessary for transforming the stochastic Hamilton–Jacobi–Bellman (HJB) equation into a linear second-order partial differential equation. To achieve excellent performance even with discontinuous cost functions, in this novel approach, knowledge-based features are introduced to constitute the proposal density and thus the low-cost region of state-space for exploration. This paper addresses the question of how the performance of the MPPI algorithm can be improved using a feature-based mixture of base densities. Furthermore, the developed algorithm is applied to an autonomous vessel that follows a track and concurrently avoids collisions using an emergency braking feature. Therefore, the presented feature-based MPPI algorithm is applied and analyzed in both simulation and full-scale experiments.

Feature-Based Proposal Density Optimization for Nonlinear Model Predictive Path Integral Control
(2022)

This paper presents a novel feature-based sampling strategy for nonlinear Model Predictive Path Integral (MPPI) control. In MPPI control, the optimal control is calculated by solving a stochastic optimal control problem online using the weighted inference of stochastic trajectories. While the algorithm can be excellently parallelized the closed- loop performance is dependent on the information quality of the drawn samples. Because these samples are drawn using a proposal density, its quality is crucial for the solver and thus the controller performance. In classical MPPI control, the explored state-space is strongly constrained by assumptions that refer to the control value variance, which are necessary for transforming the Hamilton-Jacobi-Bellman (HJB) equation into a linear second-order partial differential equation. To achieve excellent performance even with discontinuous cost-functions, in this novel approach, knowledge-based features are used to determine the proposal density and thus, the region of state- space for exploration. This paper addresses the question of how the performance of the MPPI algorithm can be improved using a feature-based mixture of base densities. Further, the developed algorithm is applied on an autonomous vessel that follows a track and concurrently avoids collisions using an emergency braking feature.

This paper presents a systematic comparison of different advanced approaches for motion prediction of vessels for docking scenarios. Therefore, a conventional nonlinear gray-box-model, its extension to a hybrid model using an additional regression neural network (RNN) and a black-box-model only based on a RNN are compared. The optimal hyperparameters are found by grid search. The training and validation data for the different models is collected in full-scale experiments using the solar research vessel Solgenia. The performances of the different prediction models are compared in full-scale scenarios. %To use the investigated approaches for controller design, a general optimal control problem containing the advanced models is described. These can improve advanced control strategies e.g., nonlinear model predictive control (NMPC) or reinforcement learning (RL). This paper explores the question of what the advantages and disadvantages of the different presented prediction approaches are and how they can be used to improve the docking behavior of a vessel.