Refine
Document Type
- Article (4)
- Conference Proceeding (4)
- Patent (2)
- Doctoral Thesis (1)
Has Fulltext
- no (11)
Keywords
- BCH codes (1)
- Binary codes (1)
- Block codes (2)
- CONCATENATED codes (1)
- CONVOLUTION codes (1)
- Channel Coding (1)
- Concatenated codes (2)
- Decoding (1)
- ERROR-correcting codes (1)
- Flash Memories (1)
Institute
This paper proposes a pipelined decoder architecture for generalised concatenated (GC) codes. These codes are constructed from inner binary Bose-Chaudhuri-Hocquenghem (BCH) and outer Reed-Solomon codes. The decoding of the component codes is based on hard decision syndrome decoding algorithms. The concatenated code consists of several small BCH codes. This enables a hardware architecture where the decoding of the component codes is pipelined. A hardware implementation of a GC decoder is presented and the cell area, cycle counts as well as the timing constraints are investigated. The results are compared to a decoder for long BCH codes with similar error correction performance. In comparison, the pipelined GC decoder achieves a higher throughput and has lower area consumption.
This work proposes an efficient hardware Implementation of sequential stack decoding of binary block codes. The decoder can be applied for soft input decoding for generalized concatenated (GC) codes. The GC codes are constructed from inner nested binary Bose-Chaudhuri-Hocquenghem (BCH) codes and outer Reed-Solomon (RS) codes. In order to enable soft input decoding for the inner BCH block codes, a sequential stack decoding algorithm is used.
This paper proposes a soft input decoding algorithm and a decoder architecture for generalized concatenated (GC) codes. The GC codes are constructed from inner nested binary Bose-Chaudhuri-Hocquenghem (BCH) codes and outer Reed-Solomon codes. In order to enable soft input decoding for the inner BCH block codes, a sequential stack decoding algorithm is used. Ordinary stack decoding of binary block codes requires the complete trellis of the code. In this paper, a representation of the block codes based on the trellises of supercodes is proposed in order to reduce the memory requirements for the representation of the BCH codes. This enables an efficient hardware implementation. The results for the decoding performance of the overall GC code are presented. Furthermore, a hardware architecture of the GC decoder is proposed. The proposed decoder is well suited for applications that require very low residual error rates.
This work proposes a decoder implementation for high-rate generalized concatenated (GC) codes. The proposed codes are well suited for error correction in flash memories for high reliability data storage. The GC codes are constructed from inner extended binary Bose-Chaudhuri-Hocquenghem (BCH) codes and outer Reed-Solomon (RS) codes. The extended BCH codes enable high-rate GC codes. Moreover, the decoder can take advantage of soft information. For the first three levels of inner codes we propose an optional Chase soft decoder. In this work, the code construction is explained and a decoder architecture is presented. Furthermore, area and throughput results are discussed.
A soft input decoding method and a decoder for generalized concatenated (GC) codes. The GC codes are constructed from inner nested block codes, such as binary Bose-Chaudhuri-Hocquenghem, BCH, codes and outer codes, such as Reed-Solomon, RS, codes. In order to enable soft input decoding for the inner block codes, a sequential stack decoding algorithm is used. Ordinary stack decoding of binary block codes requires the complete trellis of the code. In one aspect, the present invention applies instead a representation of the block codes based on the trellises of supercodes in order to reduce the memory requirements for the representation of the inner codes. This enables an efficient hardware implementation. In another aspect, there is provided a soft input decoding method and device employing a sequential stack decoding algorithm in combination with list-of-two decoding which is particularly well suited for applications that require very low residual error rates.
Method and device for error correction coding based on high-rate generalized concatenated codes
(2017)
Field error correction coding is particularly suitable for applications in non-volatile flash memories. We describe a method for error correction encoding of data to be stored in a memory device, a corresponding method for decoding a codeword matrix resulting from the encoding method, a coding device, and a computer program for performing the methods on the coding device, using a new construction for high-rate generalized concatenated (GC) codes. The codes, which are well suited for error correction in flash memories for high reliability data storage, are constructed from inner nested binary Bose-Chaudhuri-Hocquenghem (BCH) codes and outer codes, preferably Reed-Solomon (RS) codes. For the inner codes extended BCH codes are used, where only single parity-check codes are applied in the first level of the GC code. This enables high-rate codes.
This work proposes a construction for high-rate generalized concatenated (GC) codes. The proposed codes are well suited for error correction in flash memories for high reliability data storage. The GC codes are constructed from inner nested binary Bose-Chaudhuri-Hocquenghem (BCH) codes and outer Reed-Solomon (RS) codes. For the inner codes we propose extended BCH codes, where we apply single parity-check codes in the first level of the GC code. This enables high-rate codes.
This work investigates soft input decoding for generalized concatenated (GC) codes. The GC codes are constructed from inner nested binary Bose-Chaudhuri-Hocquenghem (BCH)codes and outer Reed-Solomon (RS) codes. In order to enable soft input decoding for the inner BCH block codes, a sequential stack decoding algorithm is used. Ordinary stack decoding of binary block codes requires the complete trellis of the code.
In this work a representation of the block codes based on the trellises of supercodes is proposed in order to reduce the memory requirements for the representation of the BCH codes. Results for the decoding performance of the overall GC code are presented.
Furthermore, an efficient hardware implementation of the GC decoder is proposed.
Flash memories are non-volatile memory devices. The rapid development of flash technologies leads to higher storage density, but also to higher error rates. This dissertation considers this reliability problem of flash memories and investigates suitable error correction codes, e.g. BCH-codes and concatenated codes. First, the flash cells, their functionality and error characteristics are explained. Next, the mathematics of the employed algebraic code are discussed. Subsequently, generalized concatenated codes (GCC) are presented. Compared to the commonly used BCH codes, concatenated codes promise higher code rates and lower implementation complexity. This complexity reduction is achieved by dividing a long code into smaller components, which require smaller Galois-Field sizes. The algebraic decoding algorithms enable analytical determination of the block error rate. Thus, it is possible to guarantee very low residual error rates for flash memories. Besides the complexity reduction, general concatenated codes can exploit soft information. This so-called soft decoding is not practicable for long BCH-codes. In this dissertation, two soft decoding methods for GCC are presented and analyzed. These methods are based on the Chase decoding and the stack algorithm. The last method explicitly uses the generalized concatenated code structure, where the component codes are nested subcodes. This property supports the complexity reduction. Moreover, the two-dimensional structure of GCC enables the correction of error patterns with statistical dependencies. One chapter of the thesis demonstrates how the concatenated codes can be used to correct two-dimensional cluster errors. Therefore, a two-dimensional interleaver is designed with the help of Gaussian integers. This design achieves the correction of cluster errors with the best possible radius. Large parts of this works are dedicated to the question, how the decoding algorithms can be implemented in hardware. These hardware architectures, their throughput and logic size are presented for long BCH-codes and generalized concatenated codes. The results show that generalized concatenated codes are suitable for error correction in flash memories, especially for three-dimensional NAND memory systems used in industrial applications, where low residual errors must be guaranteed.
Generalised concatenated (GC) codes are well suited for error correction in flash memories for high-reliability data storage. The GC codes are constructed from inner extended binary Bose–Chaudhuri–Hocquenghem (BCH) codes and outer Reed–Solomon codes. The extended BCH codes enable high-rate GC codes and low-complexity soft input decoding. This work proposes a decoder architecture for high-rate GC codes. For such codes, outer error and erasure decoding are mandatory. A pipelined decoder architecture is proposed that achieves a high data throughput with hard input decoding. In addition, a low-complexity soft input decoder is proposed. This soft decoding approach combines a bit-flipping strategy with algebraic decoding. The decoder components for the hard input decoding can be utilised which reduces the overhead for the soft input decoding. Nevertheless, the soft input decoding achieves a significant coding gain compared with hard input decoding.