Refine
Year of publication
Document Type
- Conference Proceeding (59)
- Article (12)
- Report (2)
- Part of a Book (1)
Keywords
- 2D space (1)
- 360-degree coverage (1)
- 3D Extended Object Tracking (1)
- 3D Extended Object Tracking (EOT) (2)
- 3D shape tracking (1)
- Actuators (2)
- Adaptive (1)
- Adaptive birth density (1)
- Aerobic fermentation (1)
- Aktorik (1)
Institute
In this paper, a gain-scheduled nonlinear control structure is proposed for a surface vessel, which takes advantage of extended linearisation techniques. Thereby, an accurate tracking of desired trajectories can be guaranteed that contributes to a safe and reliable water transport. The PI state feedback control is extended by a feedforward control based on an inverse system model. To achieve an accurate trajectory tracking, however, an observer-based disturbance compensation is necessary: external disturbances by cross currents or wind forces in lateral direction and wave-induced measurement disturbances are estimated by a nonlinear observer and used for a compensation. The efficiency and the achieved tracking performance are shown by simulation results using a validated model of the ship Korona at the HTWG Konstanz, Germany. Here, both tracking behaviour and rejection of disturbance forces in lateral direction are considered.
Sliding-mode observation with iterative parameter adaption for fast-switching solenoid valves
(2016)
Control of the armature motion of fast-switching solenoid valves is highly desired to reduce noise emission and wear of material. For feedback control, information of the current position and velocity of the armature are necessary. In mass production applications, however, position sensors are unavailable due to cost and fabrication reasons. Thus, position estimation by measuring merely electrical quantities is a key enabler for advanced control, and, hence, for efficient and robust operation of digital valves in advanced hydraulic applications. The work presented here addresses the problem of state estimation, i.e., position and velocity of the armature, by sole use of electrical measurements. The considered devices typically exhibit nonlinear and very fast dynamics, which makes observer design a challenging task. In view of the presence of parameter uncertainty and possible modeling inaccuracy, the robustness properties of sliding mode observation techniques are deployed here. The focus is on error convergence in the presence of several sources for modeling uncertainty and inaccuracy. Furthermore, the cyclic operation of switching solenoids is exploited to iteratively correct a critical parameter by taking into account the norm of the observation error of past switching cycles of the process. A thorough discussion on real-world experimental results highlights the usefulness of the proposed state observation approach.
In this paper an approach towards databased fault diagnosis of linear electromagnetic actuators is presented. Time and time-frequency-domain methods were applied to extract fault related features from current and voltage measurements. The resulting features were transformed to enhance class separability using either Principal Component Analysis (PCA) or Optimal Transformation. Feature selection and dimensionality reduction was performed employing a modified Fisher-ratio. Fault detection was carried out using a Support-Vector-Machine classifier trained with randomly selected data subsets. Results showed, that not only the used feature sets (time-domain/time-frequency-domain) are crucial for fault detection and classification, but also feature pre-processing. PCA transformed time-domain features allow fault detection and classification without misclassification, relying on current and voltage measurements making two sensors necessary to generate the data. Optimal transformed time-frequency-domain features allow a misclassification free result as well, but as they are calculated from current measurements only, a dedicated voltage sensor is not necessary. Using those features is a promising alternative even for detecting purely supply voltage related faults.
Small vessels or unmanned surface vehicles only have a limited amount of space and energy available. If these vessels require an active sensing collision avoidance system it is often not possible to mount large sensor systems like X-Band radars. Thus, in this paper an energy efficient automotive radar and a laser range sensor are evaluated for tracking surrounding vessels. For these targets, those type of sensors typically generate more than one detection per scan. Therefore, an extended target tracking problem has to be solved to estimate state end extension of the vessels. In this paper, an extended version of the probabilistic data association filter that uses random matrices is applied. The performance of the tracking system using either radar or laser range data is demonstrated in real experiments.
Probabilistic data association for tracking extended targets under clutter using random matrices
(2015)
The use of random matrices for tracking extended objects has received high attention in recent years. It is an efficient approach for tracking objects that give rise to more than one measurement per time step. In this paper, the concept of random matrices is used to track surface vessels using highresolution automotive radar sensors. Since the radar also receives a large number of clutter measurements from the water, for the data association problem, a generalized probabilistic data association filter is applied. Additionally, a modification of the filter update step is proposed to incorporate the Doppler velocity measurements. The presented tracking algorithm is validated using Monte Carlo Simulation, and some performance results with real radar data are shown as well.
A semilinear distributed parameter approach for solenoid valve control including saturation effects
(2015)
In this paper a semilinear parabolic PDE for the control of solenoid valves is presented. The distributed parameter model of the cylinder becomes nonlinear by the inclusion of saturation effects due to the material's B/H-curve. A flatness based solution of the semilinear PDE is shown as well as a convergence proof of its series solution. By numerical simulation results the adaptability of the approach is demonstrated, and differences between the linear and the nonlinear case are discussed. The major contribution of this paper is the inclusion of saturation effects into the magnetic field governing linear diffusion equation, and the development of a flatness based solution for the resulting semilinear PDE as an extension of previous works [1] and [2].
In this paper, an approach for a collision avoidance system for small Unmanned Surface Vehicles (USV) is presented. These kind of USVs are typically used for measuring tasks and thus, the collision avoidance algorithm has to take the mission objective and information about obstacles and other vessels into account. It generates an evasive trajectory that either leads around the obstacle, reduces the velocity to let another vessel pass or combines evasive manoeuvres and velocity changes. For the evasive path generation, a specialized A∗ algorithm is used that allows velocity variations and considers different turning circles for different velocities. It is applied to a grid representation of the environment that is built using a laser range finder. The laser range finder detects obstacles above the surface like other vessels, pillars or jetties. An additional tracking module is used to determine the dynamic state of moving obstacles such as other vessels. The complete collision avoidance system is integrated into a small USV and results of real world tests for environment mapping and target tracking are presented. The collision avoidance performance is shown for simulated measurement scenarios.
In this work an approach to generate collisions-free trajectories for vessels is presented. The approach consist of a global path planner and a local evasive trajectory planner. The global path planner uses chart information from ENCs to estimate waypoints for a global path avoiding obstacles defined in a chart. The local evasive trajectory planner uses information of a target tracking system to proof for a subsection of the global path if a collisions with other vessels will probably occur. In case of possible collisions the local evasive trajectory planner estimates an evasive trajectory to avoid the dynamic obstacles and lead back to the global path after the avoidance manoeuvre. For the global path planning algorithm a grid based reachability graph is applied to consider the turning circle of the own vessel. The local planner uses a grid based search algorithm that takes into account the turning circle of the vessel also. The result of both search algorithms is a sequence of waypoints defining a collision free path. A Bézier curve interpolation is applied to these waypoints to achieve a path with continuous curvatures suitable for path following algorithms.
The improvement of collision avoidance for vessels in close range encounter situations is an important topic for maritime traffic safety. Typical approaches generate evasive trajectories or optimise the trajectories of all involved vessels. Such a collision avoidance system has to produce evasive manoeuvres that do not confuse other navigators. To achieve this behaviour, a probabilistic obstacle handling based on information from a radar sensor with target tracking, that considers measurement and tracking uncertainties is proposed. A grid based path search algorithm, that takes the information from the probabilistic obstacle handling into account, is then used to generate evasive trajectories. The proposed algorithms have been tested and verified in a simulated environment for inland waters.