Refine
Year of publication
Document Type
- Conference Proceeding (56)
- Article (12)
- Report (2)
- Part of a Book (1)
Keywords
- 360-degree coverage (1)
- 3D Extended Object Tracking (1)
- 3D Extended Object Tracking (EOT) (2)
- 3D shape tracking (1)
- Actuators (2)
- Adaptive (1)
- Adaptive birth density (1)
- Aerobic fermentation (1)
- Aktorik (1)
- Alterungsbeständigkeit (1)
Institute
Observer-based self sensing for digital (on–off) single-coil solenoid valves is investigated. Self sensing refers to the case where merely the driving signals used to energize the actuator (voltage and coil current) are available to obtain estimates of both the position and velocity. A novel observer approach for estimating the position and velocity from the driving signals is presented, where the dynamics of the mechanical subsystem can be neglected in the model. Both the effect of eddy currents and saturation effects are taken into account in the observer model. Practical experimental results are shown and the new method is compared with a full-order sliding mode observer.
Standardmäßig werden zur Modellierung magnetischer Systeme für regelungstechnische Anwendungen oder im Bereich der Diagnose und Prognose konzentriert parametrische Modelle verwendet. Falls eine hohe Qualität der Prozessabbildung erforderlich ist, z.B. um Wirbelströme oder Sättigung geeignet zu berücksichtigen, nehmen diese Modelle schnell relativ hohe Ordnungen an. Es ist seit einiger Zeit bekannt, dass verteilparametrische Systeme, die z.B. (Feld-)Diffusionsprozesse beinhalten, durch niederdimensionale Modelle mit nicht ganzzahligen Ableitungen, so genannte fraktionale Modelle, sehr gut abgebildet werden können. Im Bereich der magnetischen Aktuatoren wurden diese vor rund 10 Jahren zum ersten Mal untersucht. Seitdem wird auf diesem Gebiet in verschiedenen Arbeitsgruppen geforscht. Während im Frequenzbereich die Handhabung fraktionaler Systeme einfach ist, sind Anwendungen im Zeitbereich bisher insbesondere bei zeitkritischen Anwendungen kaum anzutreffen. Der Beitrag stellt die prinzipielle Idee dar und zeigt Möglichkeiten zum Einsatz dieser Verfahren im Bereich magnetischer Aktoren auf. In einer konkreten Anwendung wird in Simulation und Experiment demonstriert, wie mit Hilfe dieser Modelle Zustandsschätzung in Magnetaktuatoren erfolgen kann und welche Vorteile sich dadurch ergeben.
In extended object tracking, a target is capable to generate more than one measurement per scan. Assuming the target being of elliptical shape and given a point cloud of measurements, the Random Matrix Framework can be applied to concurrently estimate the target’s dynamic state and extension. If the point cloud contains also clutter measurements or origins from more than one target, the data association problem has to be solved as well. However, the well-known joint probabilistic data association method assumes that a target can generate at most one detection. In this article, this constraint is relaxed, and a multi-detection version of the joint integrated probabilistic data association is proposed. The data association method is then combined with the Random Matrix framework to track targets with elliptical shape. The final filter is evaluated in the context of tracking smaller vessels using a high resolution radar sensor. The performance of the filter is shown in simulation and in several experiments.
In this paper, the problem of controlling the dissolved oxygen level (DO) during an aerobic fermentation is considered. The proposed approach deals with three major difficulties in respect to the nonlinear dynamics of the DO, the poor accuracy of the empirical models for the oxygen consumption rate and the fact that only sampled measurements are available on-line. A nonlinear integral high-gain control law including a continuous-discrete time observer is designed to keep the DO in the neighborhood of a set point value without any knowledge on the dissolved oxygen consumption rate. The local stability of the control algorithm is proved using Lyapunov tools. The performance of the control scheme is first analyzed in simulation and then experimentally evaluated during a successfull fermentation of the bacteria over a period of three days. Pseudomonas putida mt-2
This paper presents a new likelihood-based partitioning method of the measurement set for the extended object probability hypothesis density (PHD) filter framework. Recent work has mostly relied on heuristic partitioning methods that cluster the measurement data based on a distance measure between the single measurements. This can lead to poor filter performance if the tracked extended objects are closely spaced. The proposed method called Stochastic Partitioning (StP) is based on sampling methods and was inspired by a former work of Granström et. al. In this work, the StP method is applied to a Gaussian inverse Wishart (GIW) PHD filter and compared to a second filter implementation that uses the heuristic Distance Partitioning (DP) method. The performance is evaluated in Monte Carlo simulations in a scenario where two objects approach each other. It is shown that the sampling based StP method leads to an improved filter performance compared to DP.
Sensorlose Positionsregelung eines hydraulischen Proportional-Wegeventils mittels Signalinjektion
(2017)
Es wird eine Methode zur sensorlosen Positionsbestimmung bei elektromagnetisch betätigten Aktoren vorgestellt. Dabei werden basierend auf einer Signalinjektion die positionsabhängigen Parameter bei der injizierten Frequenz bestimmt und daraus über ein geeignetes Modell die Position des Magnetankers ermittelt. Die Eignung des Verfahrens zur sensorlosen Positionsregelung wird an einem bidirektionalen Proportionalventil anhand praktischer Versuche demonstriert.
With the high resolution of modern sensors such as multilayer LiDARs, estimating the 3D shape in an extended object tracking procedure is possible. In recent years, 3D shapes have been estimated in spherical coordinates using Gaussian processes, spherical double Fourier series or spherical harmonics. However, observations have shown that in many scenarios only a few measurements are obtained from top or bottom surfaces, leading to error-prone estimates in spherical coordinates. Therefore, in this paper we propose to estimate the shape in cylindrical coordinates instead, applying harmonic functions. Specifically, we derive an expansion for 3D shapes in cylindrical coordinates by solving a boundary value problem for the Laplace equation. This shape representation is then integrated in a plain greedy association model and compared to shape estimation procedures in spherical coordinates. Since the shape representation is only integrated in a basic estimator, the results are preliminary and a detailed discussion for future work is presented at the end of the paper.
In many industrial applications a workpiece is continuously fed through a heating zone in order to reach a desired temperature to obtain specific material properties. Many examples of such distributed parameter systems exist in heavy industry and also in furniture production such processes can be found. In this paper, a real-time capable model for a heating process with application to industrial furniture production is modeled. As the model is intended to be used in a Model Predictive Control (MPC) application, the main focus is to achieve minimum computational runtime while maintaining a sufficient amount of accuracy. Thus, the governing Partial Differential Equation (PDE) is discretized using finite differences on a grid, specifically tailored to this application. The grid is optimized to yield acceptable accuracy with a minimum number of grid nodes such that a relatively low order model is obtained. Subsequently, an explicit Runge-Kutta ODE (Ordinary Differential Equation) solver of fourth order is compared to the Crank-Nicolson integration scheme presented in Weiss et al. (2022) in terms of runtime and accuracy. Finally, the unknown thermal parameters of the process are estimated using real-world measurement data that was obtained from an experimental setup. The final model yields acceptable accuracy while at the same time shows promising computation time, which enables its use in an MPC controller.
In this paper, a gain-scheduled nonlinear control structure is proposed for a surface vessel, which takes advantage of extended linearisation techniques. Thereby, an accurate tracking of desired trajectories can be guaranteed that contributes to a safe and reliable water transport. The PI state feedback control is extended by a feedforward control based on an inverse system model. To achieve an accurate trajectory tracking, however, an observer-based disturbance compensation is necessary: external disturbances by cross currents or wind forces in lateral direction and wave-induced measurement disturbances are estimated by a nonlinear observer and used for a compensation. The efficiency and the achieved tracking performance are shown by simulation results using a validated model of the ship Korona at the HTWG Konstanz, Germany. Here, both tracking behaviour and rejection of disturbance forces in lateral direction are considered.
Sliding-mode observation with iterative parameter adaption for fast-switching solenoid valves
(2016)
Control of the armature motion of fast-switching solenoid valves is highly desired to reduce noise emission and wear of material. For feedback control, information of the current position and velocity of the armature are necessary. In mass production applications, however, position sensors are unavailable due to cost and fabrication reasons. Thus, position estimation by measuring merely electrical quantities is a key enabler for advanced control, and, hence, for efficient and robust operation of digital valves in advanced hydraulic applications. The work presented here addresses the problem of state estimation, i.e., position and velocity of the armature, by sole use of electrical measurements. The considered devices typically exhibit nonlinear and very fast dynamics, which makes observer design a challenging task. In view of the presence of parameter uncertainty and possible modeling inaccuracy, the robustness properties of sliding mode observation techniques are deployed here. The focus is on error convergence in the presence of several sources for modeling uncertainty and inaccuracy. Furthermore, the cyclic operation of switching solenoids is exploited to iteratively correct a critical parameter by taking into account the norm of the observation error of past switching cycles of the process. A thorough discussion on real-world experimental results highlights the usefulness of the proposed state observation approach.