Refine
Document Type
- Conference Proceeding (28)
- Article (6)
- Report (2)
- Part of a Book (1)
Keywords
- Actuators (2)
- Adaptive (1)
- Aerobic fermentation (1)
- Aktorik (1)
- Alterungsbeständigkeit (1)
- Birth Density (1)
- Collision avoidance (1)
- Continuous-discrete time observer (1)
- Correlation analysis (1)
- DO control (1)
This paper presents a new likelihood-based partitioning method of the measurement set for the extended object probability hypothesis density (PHD) filter framework. Recent work has mostly relied on heuristic partitioning methods that cluster the measurement data based on a distance measure between the single measurements. This can lead to poor filter performance if the tracked extended objects are closely spaced. The proposed method called Stochastic Partitioning (StP) is based on sampling methods and was inspired by a former work of Granström et. al. In this work, the StP method is applied to a Gaussian inverse Wishart (GIW) PHD filter and compared to a second filter implementation that uses the heuristic Distance Partitioning (DP) method. The performance is evaluated in Monte Carlo simulations in a scenario where two objects approach each other. It is shown that the sampling based StP method leads to an improved filter performance compared to DP.
In this paper an approach towards databased fault diagnosis of linear electromagnetic actuators is presented. Time and time-frequency-domain methods were applied to extract fault related features from current and voltage measurements. The resulting features were transformed to enhance class separability using either Principal Component Analysis (PCA) or Optimal Transformation. Feature selection and dimensionality reduction was performed employing a modified Fisher-ratio. Fault detection was carried out using a Support-Vector-Machine classifier trained with randomly selected data subsets. Results showed, that not only the used feature sets (time-domain/time-frequency-domain) are crucial for fault detection and classification, but also feature pre-processing. PCA transformed time-domain features allow fault detection and classification without misclassification, relying on current and voltage measurements making two sensors necessary to generate the data. Optimal transformed time-frequency-domain features allow a misclassification free result as well, but as they are calculated from current measurements only, a dedicated voltage sensor is not necessary. Using those features is a promising alternative even for detecting purely supply voltage related faults.
This paper describes an early lumping approach for generating a mathematical model of the heating process of a moving dual-layer substrate. The heat is supplied by convection and nonlinearly distributed over the whole considered spatial extend of the substrate. Using CFD simulations as a reference, two different modelling approaches have been investigated in order to achieve the most suitable model type. It is shown that due to the possibility of using the transition matrix for time discretization, an equivalent circuit model achieves superior results when compared to the Crank-Nicolson method. In order to maintain a constant sampling time for the in-visioned-control strategies, the effect of variable speed is transformed into a system description, where the state vector has constant length but a variable number of non-zero entries. The handling of the variable transport speed during the heating process is considered as the main contribution of this work. The result is a model, suitable for being used in future control strategies.
The improvement of collision avoidance for vessels in close range encounter situations is an important topic for maritime traffic safety. Typical approaches generate evasive trajectories or optimise the trajectories of all involved vessels. Such a collision avoidance system has to produce evasive manoeuvres that do not confuse other navigators. To achieve this behaviour, a probabilistic obstacle handling based on information from a radar sensor with target tracking, that considers measurement and tracking uncertainties is proposed. A grid based path search algorithm, that takes the information from the probabilistic obstacle handling into account, is then used to generate evasive trajectories. The proposed algorithms have been tested and verified in a simulated environment for inland waters.
A semilinear distributed parameter approach for solenoid valve control including saturation effects
(2015)
In this paper a semilinear parabolic PDE for the control of solenoid valves is presented. The distributed parameter model of the cylinder becomes nonlinear by the inclusion of saturation effects due to the material's B/H-curve. A flatness based solution of the semilinear PDE is shown as well as a convergence proof of its series solution. By numerical simulation results the adaptability of the approach is demonstrated, and differences between the linear and the nonlinear case are discussed. The major contribution of this paper is the inclusion of saturation effects into the magnetic field governing linear diffusion equation, and the development of a flatness based solution for the resulting semilinear PDE as an extension of previous works [1] and [2].
The method of signal injection is investigated for position estimation of proportional solenoid valves. A simple observer is proposed to estimate a position-dependent parameter, i.e. the eddy current resistance, from which the position is calculated analytically. Therefore, the relationship of position and impedance in the case of sinusoidal excitation is accurately described by consideration of classical electrodynamics. The observer approach is compared with a standard identification method, and evaluated by practical experiments on an off-the-shelf proportional solenoid valve.
Observer-based self sensing for digital (on–off) single-coil solenoid valves is investigated. Self sensing refers to the case where merely the driving signals used to energize the actuator (voltage and coil current) are available to obtain estimates of both the position and velocity. A novel observer approach for estimating the position and velocity from the driving signals is presented, where the dynamics of the mechanical subsystem can be neglected in the model. Both the effect of eddy currents and saturation effects are taken into account in the observer model. Practical experimental results are shown and the new method is compared with a full-order sliding mode observer.
Knowing the position of the spool in a solenoid valve, without using costly position sensors, is of considerable interest in a lot of industrial applications. In this paper, the problem of position estimation based on state observers for fast-switching solenoids, with sole use of simple voltage and current measurements, is investigated. Due to the short spool traveling time in fast-switching valves, convergence of the observer errors has to be achieved very fast. Moreover, the observer has to be robust against modeling uncertainties and parameter variations. Therefore, different state observer approaches are investigated, and compared to each other regarding possible uncertainties. The investigation covers a High-Gain-Observer approach, a combined High-Gain Sliding-Mode-Observer approach, both based on extended linearization, and a nonlinear Sliding-Mode-Observer based on equivalent output injection. The results are discussed by means of numerical simulations for all approaches, and finally physical experiments on a valve-mock-up are thoroughly discussed for the nonlinear Sliding-Mode-Observer.