Refine
Document Type
Language
- English (3)
Keywords
- Computer vision (1)
- GPU (1)
- Multi-camera (1)
- Real-time (1)
- Stereo-matching (1)
Institute
Classification of point clouds by different types of geometric primitives is an essential part in the reconstruction process of CAD geometry. We use support vector machines (SVM) to label patches in point clouds with the class labels tori, ellipsoids, spheres, cones, cylinders or planes. For the classification features based on different geometric properties like point normals, angles, and principal curvatures are used. These geometric features are estimated in the local neighborhood of a point of the point cloud. Computing these geometric features for a random subset of the point cloud yields a feature distribution. Different features are combined for achieving best classification results. To minimize the time consuming training phase of SVMs, the geometric features are first evaluated using linear discriminant analysis (LDA).
LDA and SVM are machine learning approaches that require an initial training phase to allow for a subsequent automatic classification of a new data set. For the training phase point clouds are generated using a simulation of a laser scanning device. Additional noise based on an laser scanner error model is added to the point clouds. The resulting LDA and SVM classifiers are then used to classify geometric primitives in simulated and real laser scanned point clouds.
Compared to other approaches, where all known features are used for classification, we explicitly compare novel against known geometric features to prove their effectiveness.
Reconstruction of hand-held laser scanner data is used in industry primarily for reverse engineering. Traditionally, scanning and reconstruction are separate steps. The operator of the laser scanner has no feedback from the reconstruction results. On-line reconstruction of the CAD geometry allows for such an immediate feedback.
We propose a method for on-line segmentation and reconstruction of CAD geometry from a stream of point data based on means that are updated on-line. These means are combined to define complex local geometric properties, e.g., to radii and center points of spherical regions. Using means of local scores, planar, cylindrical, and spherical segments are detected and extended robustly with region growing. For the on-line computation of the means we use so-called accumulated means. They allow for on-line insertion and removal of values and merging of means. Our results show that this approach can be performed on-line and is robust to noise. We demonstrate that our method reconstructs spherical, cylindrical, and planar segments on real scan data containing typical errors caused by hand-held laser scanners.
Using multi-camera matching techniques for 3d reconstruction there is usually the trade-off between the quality of the computed depth map and the speed of the computations. Whereas high quality matching methods take several seconds to several minutes to compute a depth map for one set of images, real-time methods achieve only low quality results. In this paper we present a multi-camera matching method that runs in real-time and yields high resolution depth maps. Our method is based on a novel multi-level combination of normalized cross correlation, deformed matching windows based on the multi-level depth map information, and sub-pixel precise disparity maps. The whole process is implemented completely on the GPU. With this approach we can process four 0.7 megapixel images in 129 milliseconds to a full resolution 3d depth map. Our technique is tailored for the recognition of non-technical shapes, because our target application is face recognition.