Refine
Year of publication
Document Type
- Conference Proceeding (25)
- Other Publications (9)
- Article (6)
- Report (1)
Keywords
- 3D ship detection (1)
- ADAM (1)
- Atom interferometer (1)
- Atom interferometry (1)
- Bose-Einstein condensate (2)
- Cold atoms (1)
- Computational linguistics (1)
- Convolutional networks (1)
- Data-set (1)
- Deep learning (2)
Institute
The detection of anomalous or novel images given a training dataset of only clean reference data (inliers) is an important task in computer vision. We propose a new shallow approach that represents both inlier and outlier images as ensembles of patches, which allows us to effectively detect novelties as mean shifts between reference data and outliers with the Hotelling T2 test. Since mean-shift can only be detected when the outlier ensemble is sufficiently separate from the typical set of the inlier distribution, this typical set acts as a blind spot for novelty detection. We therefore minimize its estimated size as our selection rule for critical hyperparameters, such as, e.g., the size of the patches is crucial. To showcase the capabilities of our approach, we compare results with classical and deep learning methods on the popular datasets MNIST and CIFAR-10, and demonstrate its real-world applicability in a large-scale industrial inspection scenario.
We are interested in computing a mini-batch-capable end-to-end algorithm to identify statistically independent components (ICA) in large scale and high-dimensional datasets. Current algorithms typically rely on pre-whitened data and do not integrate the two procedures of whitening and ICA estimation. Our online approach estimates a whitening and a rotation matrix with stochastic gradient descent on centered or uncentered data. We show that this can be done efficiently by combining Batch Karhunen-Löwe-Transformation [1] with Lie group techniques. Our algorithm is recursion-free and can be organized as feed-forward neural network which makes the use of GPU acceleration straight-forward. Because of the very fast convergence of Batch KLT, the gradient descent in the Lie group of orthogonal matrices stabilizes quickly. The optimization is further enhanced by integrating ADAM [2], an improved stochastic gradient descent (SGD) technique from the field of deep learning. We test the scaling capabilities by computing the independent components of the well-known ImageNet challenge (144 GB). Due to its robustness with respect to batch and step size, our approach can be used as a drop-in replacement for standard ICA algorithms where memory is a limiting factor.
Targetless Lidar-camera registration is a repeating task in many computer vision and robotics applications and requires computing the extrinsic pose of a point cloud with respect to a camera or vice-versa. Existing methods based on learning or optimization lack either generalization capabilities or accuracy. Here, we propose a combination of pre-training and optimization using a neural network-based mutual information estimation technique (MINE [1]). This construction allows back-propagating the gradient to the calibration parameters and enables stochastic gradient descent. To ensure orthogonality constraints with respect to the rotation matrix we incorporate Lie-group techniques. Furthermore, instead of optimizing on entire images, we operate on local patches that are extracted from the temporally synchronized projected Lidar points and camera frames. Our experiments show that this technique not only improves over existing techniques in terms of accuracy, but also shows considerable generalization capabilities towards new Lidar-camera configurations.
Optical surface inspection: A novelty detection approach based on CNN-encoded texture features
(2018)
In inspection systems for textured surfaces, a reference texture is typically known before novel examples are inspected. Mostly, the reference is only available in a digital format. As a consequence, there is no dataset of defective examples available that could be used to train a classifier. We propose a texture model approach to novelty detection. The texture model uses features encoded by a convolutional neural network (CNN) trained on natural image data. The CNN activations represent the specific characteristics of the digital reference texture which are learned by a one-class classifier. We evaluate our novelty detector in a digital print inspection scenario. The inspection unit is based on a camera array and a flashing light illumination which allows for inline capturing of multichannel images at a high rate. In order to compare our results to manual inspection, we integrated our inspection unit into an industrial single-pass printing system.
Atom interferometers have a multitude of proposed applications in space including precise measurements of the Earth's gravitational field, in navigation & ranging, and in fundamental physics such as tests of the weak equivalence principle (WEP) and gravitational wave detection. While atom interferometers are realized routinely in ground-based laboratories, current efforts aim at the development of a space compatible design optimized with respect to dimensions, weight, power consumption, mechanical robustness and radiation hardness. In this paper, we present a design of a high-sensitivity differential dual species 85Rb/87Rb atom interferometer for space, including physics package, laser system, electronics and software. The physics package comprises the atom source consisting of dispensers and a 2D magneto-optical trap (MOT), the science chamber with a 3D-MOT, a magnetic trap based on an atom chip and an optical dipole trap (ODT) used for Bose-Einstein condensate (BEC) creation and interferometry, the detection unit, the vacuum system for 10-11 mbar ultra-high vacuum generation, and the high-suppression factor magnetic shielding as well as the thermal control system.
The laser system is based on a hybrid approach using fiber-based telecom components and high-power laser diode technology and includes all laser sources for 2D-MOT, 3D-MOT, ODT, interferometry and detection. Manipulation and switching of the laser beams is carried out on an optical bench using Zerodur bonding technology. The instrument consists of 9 units with an overall mass of 221 kg, an average power consumption of 608 W (819 W peak), and a volume of 470 liters which would well fit on a satellite to be launched with a Soyuz rocket, as system studies have shown.
Image novelty detection is a repeating task in computer vision and describes the detection of anomalous images based on a training dataset consisting solely of normal reference data. It has been found that, in particular, neural networks are well-suited for the task. Our approach first transforms the training and test images into ensembles of patches, which enables the assessment of mean-shifts between normal data and outliers. As mean-shifts are only detectable when the outlier ensemble and inlier distribution are spatially separate from each other, a rich feature space, such as a pre-trained neural network, needs to be chosen to represent the extracted patches. For mean-shift estimation, the Hotelling T2 test is used. The size of the patches turned out to be a crucial hyperparameter that needs additional domain knowledge about the spatial size of the expected anomalies (local vs. global). This also affects model selection and the chosen feature space, as commonly used Convolutional Neural Networks or Vision Image Transformers have very different receptive field sizes. To showcase the state-of-the-art capabilities of our approach, we compare results with classical and deep learning methods on the popular dataset CIFAR-10, and demonstrate its real-world applicability in a large-scale industrial inspection scenario using the MVTec dataset. Because of the inexpensive design, our method can be implemented by a single additional 2D-convolution and pooling layer and allows particularly fast prediction times while being very data-efficient.
Incremental one-class learning using regularized null-space training for industrial defect detection
(2024)
One-class incremental learning is a special case of class-incremental learning, where only a single novel class is incrementally added to an existing classifier instead of multiple classes. This case is relevant in industrial defect detection scenarios, where novel defects usually appear during operation. Existing rolled-out classifiers must be updated incrementally in this scenario with only a few novel examples. In addition, it is often required that the base classifier must not be altered due to approval and warranty restrictions. While simple finetuning often gives the best performance across old and new classes, it comes with the drawback of potentially losing performance on the base classes (catastrophic forgetting [1]). Simple prototype approaches [2] work without changing existing weights and perform very well when the classes are well separated but fail dramatically when not. In theory, null-space training (NSCL) [3] should retain the basis classifier entirely, as parameter updates are restricted to the null space of the network with respect to existing classes. However, as we show, this technique promotes overfitting in the case of one-class incremental learning. In our experiments, we found that unconstrained weight growth in null space is the underlying issue, leading us to propose a regularization term (R-NSCL) that penalizes the magnitude of amplification. The regularization term is added to the standard classification loss and stabilizes null-space training in the one-class scenario by counteracting overfitting. We test the method’s capabilities on two industrial datasets, namely AITEX and MVTec, and compare the performance to state-of-the-art algorithms for class-incremental learning.
Digital cameras are subject to physical, electronic and optic effects that result in errors and noise in the image. These effects include for example a temperature dependent dark current, read noise, optical vignetting or different sensitivities of individual pixels. The task of a radiometric calibration is to reduce these errors in the image and thus improve the quality of the overall application. In this work we present an algorithm for radiometric calibration based on Gaussian processes. Gaussian processes are a regression method widely used in machine learning that is particularly useful in our context. Then Gaussian process regression is used to learn a temperature and exposure time dependent mapping from observed gray-scale values to true light intensities for each pixel. Regression models based on the characteristics of single pixels suffer from excessively high runtime and thus are unsuitable for many practical applications. In contrast, a single regression model for an entire image with high spatial resolution leads to a low quality radiometric calibration, which also limits its practical use. The proposed algorithm is predicated on a partitioning of the pixels such that each pixel partition can be represented by one single regression model without quality loss. Partitioning is done by extracting features from the characteristic of each pixel and using them for lexicographic sorting. Splitting the sorted data into partitions with equal size yields the final partitions, each of which is represented by the partition centers. An individual Gaussian process regression and model selection is done for each partition. Calibration is performed by interpolating the gray-scale value of each pixel with the regression model of the respective partition. The experimental comparison of the proposed approach to classical flat field calibration shows a consistently higher reconstruction quality for the same overall number of calibration frames.
Classification of point clouds by different types of geometric primitives is an essential part in the reconstruction process of CAD geometry. We use support vector machines (SVM) to label patches in point clouds with the class labels tori, ellipsoids, spheres, cones, cylinders or planes. For the classification features based on different geometric properties like point normals, angles, and principal curvatures are used. These geometric features are estimated in the local neighborhood of a point of the point cloud. Computing these geometric features for a random subset of the point cloud yields a feature distribution. Different features are combined for achieving best classification results. To minimize the time consuming training phase of SVMs, the geometric features are first evaluated using linear discriminant analysis (LDA).
LDA and SVM are machine learning approaches that require an initial training phase to allow for a subsequent automatic classification of a new data set. For the training phase point clouds are generated using a simulation of a laser scanning device. Additional noise based on an laser scanner error model is added to the point clouds. The resulting LDA and SVM classifiers are then used to classify geometric primitives in simulated and real laser scanned point clouds.
Compared to other approaches, where all known features are used for classification, we explicitly compare novel against known geometric features to prove their effectiveness.