### Refine

#### Document Type

- Conference Proceeding (17)
- Other Publications (9)
- Article (4)
- Report (1)

#### Keywords

Atom interferometers have a multitude of proposed applications in space including precise measurements of the Earth's gravitational field, in navigation & ranging, and in fundamental physics such as tests of the weak equivalence principle (WEP) and gravitational wave detection. While atom interferometers are realized routinely in ground-based laboratories, current efforts aim at the development of a space compatible design optimized with respect to dimensions, weight, power consumption, mechanical robustness and radiation hardness. In this paper, we present a design of a high-sensitivity differential dual species 85Rb/87Rb atom interferometer for space, including physics package, laser system, electronics and software. The physics package comprises the atom source consisting of dispensers and a 2D magneto-optical trap (MOT), the science chamber with a 3D-MOT, a magnetic trap based on an atom chip and an optical dipole trap (ODT) used for Bose-Einstein condensate (BEC) creation and interferometry, the detection unit, the vacuum system for 10-11 mbar ultra-high vacuum generation, and the high-suppression factor magnetic shielding as well as the thermal control system.
The laser system is based on a hybrid approach using fiber-based telecom components and high-power laser diode technology and includes all laser sources for 2D-MOT, 3D-MOT, ODT, interferometry and detection. Manipulation and switching of the laser beams is carried out on an optical bench using Zerodur bonding technology. The instrument consists of 9 units with an overall mass of 221 kg, an average power consumption of 608 W (819 W peak), and a volume of 470 liters which would well fit on a satellite to be launched with a Soyuz rocket, as system studies have shown.

Optical surface inspection: A novelty detection approach based on CNN-encoded texture features
(2018)

In inspection systems for textured surfaces, a reference texture is typically known before novel examples are inspected. Mostly, the reference is only available in a digital format. As a consequence, there is no dataset of defective examples available that could be used to train a classifier. We propose a texture model approach to novelty detection. The texture model uses features encoded by a convolutional neural network (CNN) trained on natural image data. The CNN activations represent the specific characteristics of the digital reference texture which are learned by a one-class classifier. We evaluate our novelty detector in a digital print inspection scenario. The inspection unit is based on a camera array and a flashing light illumination which allows for inline capturing of multichannel images at a high rate. In order to compare our results to manual inspection, we integrated our inspection unit into an industrial single-pass printing system.

Increasing robustness of handwriting recognition using character N-Gram decoding on large lexica
(2016)

Offline handwriting recognition systems often include a decoding step, that is retrieving the most likely character sequence from the underlying machine learning algorithm. Decoding is sensitive to ranges of weakly predicted characters, caused e.g. by obstructions in the scanned document. We present a new algorithm for robust decoding of handwriting recognizer outputs using character n-grams. Multidimensional hierarchical subsampling artificial neural networks with Long-Short-Term-Memory cells have been successfully applied to offline handwriting recognition. Output activations from such networks, trained with Connectionist Temporal Classification, can be decoded with several different algorithms in order to retrieve the most likely literal string that it represents. We present a new algorithm for decoding the network output while restricting the possible strings to a large lexicon. The index used for this work is an n-gram index with tri-grams used for experimental comparisons. N-grams are extracted from the network output using a backtracking algorithm and each n-gram assigned a mean probability. The decoding result is obtained by intersecting the n-gram hit lists while calculating the total probability for each matched lexicon entry. We conclude with an experimental comparison of different decoding algorithms on a large lexicon.

Knot placement for curve approximation is a well known and yet open problem in geometric modeling. Selecting knot values that yield good approximations is a challenging task, based largely on heuristics and user experience. More advanced approaches range from parametric averaging to genetic algorithms.
In this paper, we propose to use Support Vector Machines (SVMs) to determine suitable knot vectors for B-spline curve approximation. The SVMs are trained to identify locations in a sequential point cloud where knot placement will improve the approximation error. After the training phase, the SVM can assign, to each point set location, a so-called score. This score is based on geometric and differential geometric features of points. It measures the quality of each location to be used as knots in the subsequent approximation. From these scores, the final knot vector can be constructed exploring the topography of the score-vector without the need for iteration or optimization in the approximation process. Knot vectors computed with our approach outperform state of the art methods and yield tighter approximations.

Volterra and Wiener series
(2011)

Volterra and Wiener series are two classes of polynomial representations of nonlinear systems. They are perhaps the best understood and most widely used nonlinear system representations in signal processing and system identification. A Volterra or Wiener representation can be thought of as a natural extension of the classical linear system representation. In addition to the convolution of the input signal with the system's impulse response, the system representation includes a series of nonlinear terms that contain products of increasing order of the input signal with itself. It can be shown that these polynomial extension terms allow for representing a large class of nonlinear systems which basically encompasses all systems with scalar outputs that are time-invariant and have noninfinite memory.

In the reverse engineering process one has to classify parts of point clouds with the correct type of geometric primitive. Features based on different geometric properties like point relations, normals, and curvature information can be used, to train classifiers like Support Vector Machines (SVM). These geometric features are estimated in the local neighborhood of a point of the point cloud. The multitude of different features makes an in-depth comparison necessary. In this work we evaluate 23 features for the classification of geometric primitives in point clouds. Their performance is evaluated on SVMs when used to classify geometric primitives in simulated and real laser scanned point clouds. We also introduce a normalization of point cloud density to improve classification generalization.