Refine
Document Type
- Conference Proceeding (15)
- Article (3)
- Other Publications (2)
Has Fulltext
- no (20)
Keywords
Hot isostatic pressing (HIP) allows the production of complex components geometry. Generally, a high quality of the components is achieved due to the well managed composition of the metal powder and the non-isotropic properties. If a duplex stainless steel is produced, a heat treatment after the HIP-process is necessary to remove precipitations like carbides, nitrides and intermetallic phases. In a new process, the sintering step should be combined with the heat treatment. In this case a high cooling rate is necessary to avoid precipitations in duplex stainless steels. In this work, the influence of the HIP-temperature and the wall thickness on corrosion resistance, microstructure and impact strength were investigated. The results should help to optimize the process parameters like temperature and cooling rate. For the investigation, two HIP-temperatures were tested in a classical HIP-process step with a defined cooling rate. An additional heat treatment was not conducted. The specimens were cut from different sectors of the HIP-block. For investigation of the corrosion resistance, the critical pitting temperature was determined with electrochemical method according to EN ISO 17864. An impact test was used to determine the impact transition temperature. Metallographic investigations show the microstructure in the different sectors of the HIP-block.
Influence of Temperature on the Corrosion behaviour of Stainless Steels under Tribological Stress
(2018)
Posterpräsentation
As a result of increasing needs and shrinking resources, aquaculture is gaining progressively significance in the recent years. Ecological issues such as negative effects on the ecological system due to the high fish density in the farms, the use of copper as antifouling strategy etc. are very present, particularly regarding the increasing number of fish going to be produced in farms in the future. Current trends focus on larger farms operated offshore. To make these farms working safe and economical, reliability has to be improved and maintenance costs need to be reduced. Also, alternatives with higher mechanical strength compared to current textile net materials as well as common metal wires might be necessary. In the last years, a new net system made of high strength duplex stainless steel wires with environmentally friendly antifouling properties suitable for offshore applications was developed. The first nets are operating for one year now as predator protection (i.e. seals) for fish farms and show a good performance in cleaning capability and predator protection. But in the real usage, some corrosion effects in the contact points of the net made of duplex stainless steel 1.4362 occur which were not observed in preliminary tests in laboratory and at different test sites around the world. These corrosion effects endanger the sustainable success of the net system. In this work, the observed corrosion effects are investigated. A laboratory test, which simulates the movement in the contact points of the net, was developed. Two pieces of wire are bent in the middle and get stucked into each other. One wire is fixed at both ends and the second wire is fixed on one end. On the other end, a circular movement with 1-2 rps and a 1 cm displacement is applied. The movement generates friction between the wires and the passive layer will be locally damaged. When the movement stops, a repassivation starts. The passivity breakdown and the repassivation were measured with electrochemical techniques. During the friction phase, when the surface will be activated, the open circuit potential breaks down. When the friction stops, the OCP increases. Between the movement phases, measurements of critical pitting potential were done. Thereby the quality of repassivation was investigated. The tests were done in a 3% sodium chloride solution. Different temperatures were tested as well as the influence of air saturation and low oxygen content.
The project aims for the development of a new material system from high tensile stainless steel wires as net material with environmentally compatible antifouling properties for off-shore fish farm cages. Therefore, current net materials from textiles (polyamide) shall be partially replaced by high strength stainless steel in order to have a more environmentally compatible system which meets the more severe mechanical loads (waves, storms, predators (sharks)). With a new antifouling strategy current issues like reduced ecological damage (e.g. due to copper disposal), lower maintenance costs (e.g. cleaning) and reduced durability shall be resolved.