### Refine

#### Document Type

- Conference Proceeding (11)
- Other Publications (4)
- Article (1)
- Doctoral Thesis (1)

#### Language

- English (17)

#### Keywords

#### Institute

In this paper we present a method using deep learning to compute parametrizations for B-spline curve approximation. Existing methods consider the computation of parametric values and a knot vector as separate problems. We propose to train interdependent deep neural networks to predict parametric values and knots. We show that it is possible to include B-spline curve approximation directly into the neural network architecture. The resulting parametrizations yield tight approximations and are able to outperform state-of-the-art methods.

Deep neural networks have been successfully applied to problems such as image segmentation, image super-resolution, coloration and image inpainting. In this work we propose the use of convolutional neural networks (CNN) for image inpainting of large regions in high-resolution textures. Due to limited computational resources processing high-resolution images with neural networks is still an open problem. Existing methods separate inpainting of global structure and the transfer of details, which leads to blurry results and loss of global coherence in the detail transfer step. Based on advances in texture synthesis using CNNs we propose patch-based image inpainting by a single network topology that is able to optimize for global as well as detail texture statistics. Our method is capable of filling large inpainting regions, oftentimes exceeding quality of comparable methods for images of high-resolution (2048x2048px). For reference patch look-up we propose to use the same summary statistics that are used in the inpainting process.

Knot placement for curve approximation is a well known and yet open problem in geometric modeling. Selecting knot values that yield good approximations is a challenging task, based largely on heuristics and user experience. More advanced approaches range from parametric averaging to genetic algorithms.
In this paper, we propose to use Support Vector Machines (SVMs) to determine suitable knot vectors for B-spline curve approximation. The SVMs are trained to identify locations in a sequential point cloud where knot placement will improve the approximation error. After the training phase, the SVM can assign, to each point set location, a so-called score. This score is based on geometric and differential geometric features of points. It measures the quality of each location to be used as knots in the subsequent approximation. From these scores, the final knot vector can be constructed exploring the topography of the score-vector without the need for iteration or optimization in the approximation process. Knot vectors computed with our approach outperform state of the art methods and yield tighter approximations.

Deep 3D
(2017)

Vortrag

In the reverse engineering process one has to classify parts of point clouds with the correct type of geometric primitive. Features based on different geometric properties like point relations, normals, and curvature information can be used, to train classifiers like Support Vector Machines (SVM). These geometric features are estimated in the local neighborhood of a point of the point cloud. The multitude of different features makes an in-depth comparison necessary. In this work we evaluate 23 features for the classification of geometric primitives in point clouds. Their performance is evaluated on SVMs when used to classify geometric primitives in simulated and real laser scanned point clouds. We also introduce a normalization of point cloud density to improve classification generalization.

Classification of point clouds by different types of geometric primitives is an essential part in the reconstruction process of CAD geometry. We use support vector machines (SVM) to label patches in point clouds with the class labels tori, ellipsoids, spheres, cones, cylinders or planes. For the classification features based on different geometric properties like point normals, angles, and principal curvatures are used. These geometric features are estimated in the local neighborhood of a point of the point cloud. Computing these geometric features for a random subset of the point cloud yields a feature distribution. Different features are combined for achieving best classification results. To minimize the time consuming training phase of SVMs, the geometric features are first evaluated using linear discriminant analysis (LDA).
LDA and SVM are machine learning approaches that require an initial training phase to allow for a subsequent automatic classification of a new data set. For the training phase point clouds are generated using a simulation of a laser scanning device. Additional noise based on an laser scanner error model is added to the point clouds. The resulting LDA and SVM classifiers are then used to classify geometric primitives in simulated and real laser scanned point clouds.
Compared to other approaches, where all known features are used for classification, we explicitly compare novel against known geometric features to prove their effectiveness.