006 Spezielle Computerverfahren
Refine
Year of publication
- 2018 (2)
Document Type
Language
- English (2)
Has Fulltext
- yes (2)
Keywords
Institute
Deep neural networks have become a veritable alternative to classic speaker recognition and clustering methods in recent years. However, while the speech signal clearly is a time series, and despite the body of literature on the benefits of prosodic (suprasegmental) features, identifying voices has usually not been approached with sequence learning methods. Only recently has a recurrent neural network (RNN) been successfully applied to this task, while the use of convolutional neural networks (CNNs) (that are not able to capture arbitrary time dependencies, unlike RNNs) still prevails. In this paper, we show the effectiveness of RNNs for speaker recognition by improving state of the art speaker clustering performance and robustness on the classic TIMIT benchmark. We provide arguments why RNNs are superior by experimentally showing a “sweet spot” of the segment length for successfully capturing prosodic information that has been theoretically predicted in previous work.
We propose a novel end-to-end neural network architecture that, once trained, directly outputs a probabilistic clustering of a batch of input examples in one pass. It estimates a distribution over the number of clusters k, and for each 1≤k≤kmax, a distribution over the individual cluster assignment for each data point. The network is trained in advance in a supervised fashion on separate data to learn grouping by any perceptual similarity criterion based on pairwise labels (same/different group). It can then be applied to different data containing different groups. We demonstrate promising performance on high-dimensional data like images (COIL-100) and speech (TIMIT). We call this “learning to cluster” and show its conceptual difference to deep metric learning, semi-supervise clustering and other related approaches while having the advantage of performing learnable clustering fully end-to-end.