### Refine

#### Document Type

- Conference Proceeding (20)
- Article (12)
- Other Publications (1)

#### Keywords

- Bernstein coefficient (2)
- Bernstein coefficients (1)
- Bernstein polynomial (4)
- Bernstein polynomials (1)
- Cauchon algorithm (4)
- Cauchon diagram (1)
- Cauchon matrix (1)
- Checkerboard ordering (3)
- Checkerboard partial ordering (1)
- Complex interval (2)

Bernstein polynomials on a simplex V are considered. The expansion of a given polynomial p into these polynomials provides bounds for range of p over V. Bounds for the range of a rational function over V can easily be obtained from the Bernstein expansions of the numerator and denominator polynomials of this function. In this paper it is shown that these bounds converge monotonically and linearly to the range of the rational function if the degree of the Bernstein expansion is elevated. If V is subdivided then the convergence is quadratic with respect to the maximum of the diameters of the subsimplices.

We consider classes of (Formula presented.)-by-(Formula presented.) sign regular matrices, i.e. of matrices with the property that all their minors of fixed order (Formula presented.) have one specified sign or are allowed also to vanish, (Formula presented.). If the sign is nonpositive for all (Formula presented.), such a matrix is called totally nonpositive. The application of the Cauchon algorithm to nonsingular totally nonpositive matrices is investigated and a new determinantal test for these matrices is derived. Also matrix intervals with respect to the checkerboard ordering are considered. This order is obtained from the usual entry-wise ordering on the set of the (Formula presented.)-by-(Formula presented.) matrices by reversing the inequality sign for each entry in a checkerboard fashion. For some classes of sign regular matrices, it is shown that if the two bound matrices of such a matrix interval are both in the same class then all matrices lying between these two bound matrices are in the same class, too.

This paper considers intervals of real matrices with respect to partial orders and the problem to infer from some exposed matrices lying on the boundary of such an interval that all real matrices taken from the interval possess a certain property. In many cases such a property requires that the chosen matrices have an identically signed inverse. We also briefly survey related problems, e.g., the invariance of matrix properties under entry-wise perturbations.

A method is investigated by which tight bounds on the range of a multivariate rational function over a box can be computed. The approach relies on the expansion of the numerator and denominator polynomials in Bernstein polynomials. Convergence of the bounds to the range with respect to degree elevation of the Bernstein expansion, to the width of the box and to subdivision are proven and the inclusion isotonicity of the related enclosure function is shown.