Refine
Year of publication
Document Type
- Conference Proceeding (21)
- Other Publications (3)
- Article (2)
- Report (1)
Language
- English (27)
Keywords
- 3D ship detection (1)
- ADAM (1)
- B-spline activation function (1)
- Camera characteristic (1)
- Computer vision (1)
- Damage Detection (1)
- Dark current (1)
- Data-set (1)
- Deep learning (1)
- Defect detection (1)
Institute
Digital cameras are subject to physical, electronic and optic effects that result in errors and noise in the image. These effects include for example a temperature dependent dark current, read noise, optical vignetting or different sensitivities of individual pixels. The task of a radiometric calibration is to reduce these errors in the image and thus improve the quality of the overall application. In this work we present an algorithm for radiometric calibration based on Gaussian processes. Gaussian processes are a regression method widely used in machine learning that is particularly useful in our context. Then Gaussian process regression is used to learn a temperature and exposure time dependent mapping from observed gray-scale values to true light intensities for each pixel. Regression models based on the characteristics of single pixels suffer from excessively high runtime and thus are unsuitable for many practical applications. In contrast, a single regression model for an entire image with high spatial resolution leads to a low quality radiometric calibration, which also limits its practical use. The proposed algorithm is predicated on a partitioning of the pixels such that each pixel partition can be represented by one single regression model without quality loss. Partitioning is done by extracting features from the characteristic of each pixel and using them for lexicographic sorting. Splitting the sorted data into partitions with equal size yields the final partitions, each of which is represented by the partition centers. An individual Gaussian process regression and model selection is done for each partition. Calibration is performed by interpolating the gray-scale value of each pixel with the regression model of the respective partition. The experimental comparison of the proposed approach to classical flat field calibration shows a consistently higher reconstruction quality for the same overall number of calibration frames.
Classification of point clouds by different types of geometric primitives is an essential part in the reconstruction process of CAD geometry. We use support vector machines (SVM) to label patches in point clouds with the class labels tori, ellipsoids, spheres, cones, cylinders or planes. For the classification features based on different geometric properties like point normals, angles, and principal curvatures are used. These geometric features are estimated in the local neighborhood of a point of the point cloud. Computing these geometric features for a random subset of the point cloud yields a feature distribution. Different features are combined for achieving best classification results. To minimize the time consuming training phase of SVMs, the geometric features are first evaluated using linear discriminant analysis (LDA).
LDA and SVM are machine learning approaches that require an initial training phase to allow for a subsequent automatic classification of a new data set. For the training phase point clouds are generated using a simulation of a laser scanning device. Additional noise based on an laser scanner error model is added to the point clouds. The resulting LDA and SVM classifiers are then used to classify geometric primitives in simulated and real laser scanned point clouds.
Compared to other approaches, where all known features are used for classification, we explicitly compare novel against known geometric features to prove their effectiveness.
Reconstruction of hand-held laser scanner data is used in industry primarily for reverse engineering. Traditionally, scanning and reconstruction are separate steps. The operator of the laser scanner has no feedback from the reconstruction results. On-line reconstruction of the CAD geometry allows for such an immediate feedback.
We propose a method for on-line segmentation and reconstruction of CAD geometry from a stream of point data based on means that are updated on-line. These means are combined to define complex local geometric properties, e.g., to radii and center points of spherical regions. Using means of local scores, planar, cylindrical, and spherical segments are detected and extended robustly with region growing. For the on-line computation of the means we use so-called accumulated means. They allow for on-line insertion and removal of values and merging of means. Our results show that this approach can be performed on-line and is robust to noise. We demonstrate that our method reconstructs spherical, cylindrical, and planar segments on real scan data containing typical errors caused by hand-held laser scanners.
We are interested in computing a mini-batch-capable end-to-end algorithm to identify statistically independent components (ICA) in large scale and high-dimensional datasets. Current algorithms typically rely on pre-whitened data and do not integrate the two procedures of whitening and ICA estimation. Our online approach estimates a whitening and a rotation matrix with stochastic gradient descent on centered or uncentered data. We show that this can be done efficiently by combining Batch Karhunen-Löwe-Transformation [1] with Lie group techniques. Our algorithm is recursion-free and can be organized as feed-forward neural network which makes the use of GPU acceleration straight-forward. Because of the very fast convergence of Batch KLT, the gradient descent in the Lie group of orthogonal matrices stabilizes quickly. The optimization is further enhanced by integrating ADAM [2], an improved stochastic gradient descent (SGD) technique from the field of deep learning. We test the scaling capabilities by computing the independent components of the well-known ImageNet challenge (144 GB). Due to its robustness with respect to batch and step size, our approach can be used as a drop-in replacement for standard ICA algorithms where memory is a limiting factor.
Targetless Lidar-camera registration is a repeating task in many computer vision and robotics applications and requires computing the extrinsic pose of a point cloud with respect to a camera or vice-versa. Existing methods based on learning or optimization lack either generalization capabilities or accuracy. Here, we propose a combination of pre-training and optimization using a neural network-based mutual information estimation technique (MINE [1]). This construction allows back-propagating the gradient to the calibration parameters and enables stochastic gradient descent. To ensure orthogonality constraints with respect to the rotation matrix we incorporate Lie-group techniques. Furthermore, instead of optimizing on entire images, we operate on local patches that are extracted from the temporally synchronized projected Lidar points and camera frames. Our experiments show that this technique not only improves over existing techniques in terms of accuracy, but also shows considerable generalization capabilities towards new Lidar-camera configurations.
Motion estimation is an essential element for autonomous vessels. It is used e.g. for lidar motion compensation as well as mapping and detection tasks in a maritime environment. Because the use of gyroscopes is not reliable and a high performance inertial measurement unit is quite expensive, we present an approach for visual pitch and roll estimation that utilizes a convolutional neural network for water segmentation, a stereo system for reconstruction and simple geometry to estimate pitch and roll. The algorithm is validated on a novel, publicly available dataset recorded at Lake Constance. Our experiments show that the pitch and roll estimator provides accurate results in comparison to an Xsens IMU sensor. We can further improve the pitch and roll estimation by sensor fusion with a gyroscope. The algorithm is available in its implementation as a ROS node.
In my research sabbatical I was working on three different topics, namely orthogonal polynomials in geometric modeling, re-parametrized univariate subdivision curves, and reconstruction of 3d-fish-models and other zoological artifacts. In the subsequent Sections, I will describe my particular activity in these different fields. The sections are meant to present an overview of my research activities, leaving out the technical details.
Section 1 is on orthogonal polynomials and other related generating systems for functions systems of smooth function.
In Section 2, I will discuss the application of various re-parametrization schemes for interpolatory subdivision algorithms for the generation of space curves.
The next Section 3 is concerned with my research at the University of Queensland, Brisbane, in collaboration with Dr. Ulrike Siebeck from the School of Biomedical Sciences on fish behavior and reconstruction of 3d-fish models in particular.
In the last Section 4, I will describe what effects this research will have on in my subsequent teaching at the University of Applied Science Konstanz (HTWG).
Three-dimensional ship localization with only one camera is a challenging task due to the loss of depth information caused by perspective projection. In this paper, we propose a method to measure distances based on the assumption that ships lie on a flat surface. This assumption allows to recover depth from a single image using the principle of inverse perspective. For the 3D ship detection task, we use a hybrid approach that combines image detection with a convolutional neural network, camera geometry and inverse perspective. Furthermore, a novel calculation of object height is introduced. Experiments show that the monocular distance computation works well in comparison to a Velodyne lidar. Due to its robustness, this could be an easy-to-use baseline method for detection tasks in navigation systems.
In this paper we present a method using deep learning to compute parametrizations for B-spline curve approximation. Existing methods consider the computation of parametric values and a knot vector as separate problems. We propose to train interdependent deep neural networks to predict parametric values and knots. We show that it is possible to include B-spline curve approximation directly into the neural network architecture. The resulting parametrizations yield tight approximations and are able to outperform state-of-the-art methods.
Knot placement for curve approximation is a well known and yet open problem in geometric modeling. Selecting knot values that yield good approximations is a challenging task, based largely on heuristics and user experience. More advanced approaches range from parametric averaging to genetic algorithms.
In this paper, we propose to use Support Vector Machines (SVMs) to determine suitable knot vectors for B-spline curve approximation. The SVMs are trained to identify locations in a sequential point cloud where knot placement will improve the approximation error. After the training phase, the SVM can assign, to each point set location, a so-called score. This score is based on geometric and differential geometric features of points. It measures the quality of each location to be used as knots in the subsequent approximation. From these scores, the final knot vector can be constructed exploring the topography of the score-vector without the need for iteration or optimization in the approximation process. Knot vectors computed with our approach outperform state of the art methods and yield tighter approximations.