Refine
Document Type
- Conference Proceeding (49)
- Article (12)
- Doctoral Thesis (1)
- Other Publications (1)
Keywords
- AAL (3)
- Accelerometer (1)
- Accelerometers (1)
- Accessibility (1)
- Accessible Tourism (1)
- Ambient assisted living (2)
- Apnoe (1)
- Assisted living (1)
- Assistive systems (1)
- Atmung (2)
Objective: This paper presents an algorithm for non-invasive sleep stage identification using respiratory, heart rate and movement signals. The algorithm is part of a system suitable for long-term monitoring in a home environment, which should support experts analysing sleep. Approach: As there is a strong correlation between bio-vital signals and sleep stages, multinomial logistic regression was chosen for categorical distribution of sleep stages. Several derived parameters of three signals (respiratory, heart rate and movement) are input for the proposed method. Sleep recordings of five subjects were used for the training of a machine learning model and 30 overnight recordings collected from 30 individuals with about 27 000 epochs of 30 s intervals each were evaluated. Main results: The achieved rate of accuracy is 72% for Wake, NREM, REM (with Cohen's kappa value 0.67) and 58% for Wake, Light (N1 and N2), Deep (N3) and REM stages (Cohen's kappa is 0.50). Our approach has confirmed the potential of this method and disclosed several ways for its improvement. Significance: The results indicate that respiratory, heart rate and movement signals can be used for sleep studies with a reasonable level of accuracy. These inputs can be obtained in a non-invasive way applying it in a home environment. The proposed system introduces a convenient approach for a long-term monitoring system which could support sleep laboratories. The algorithm which was developed allows for an easy adjustment of input parameters that depend on available signals and for this reason could also be used with various hardware systems.
This document presents an algorithm for a non-obtrusive recognition of Sleep/Wake states using signals derived from ECG, respiration, and body movement captured while lying in a bed. As a core mathematical base of system data analytics, multinomial logistic regression techniques were chosen. Derived parameters of the three signals are used as the input for the proposed method. The overall achieved accuracy rate is 84% for Wake/Sleep stages, with Cohen’s kappa value 0.46. The presented algorithm should support experts in analyzing sleep quality in more detail. The results confirm the potential of this method and disclose several ways for its improvement.
Assistive environments are entering our homes faster than ever. However, there are still various barriers to be broken. One of the crucial points is a personalization of offered services and integration of assistive technologies in common objects and therefore in a regular daily routine. Recognition of sleep patterns for the preliminary sleep study is one of the health services that could be performed in an undisturbing way. This article proposes the hardware system for the measurement of bio-vital signals necessary for initial sleep study in a non-obtrusive way. The first results confirm the potential of measurement of breathing and movement signals with the proposed system.
Sleep quality and in general, behavior in bed can be detected using a sleep state analysis. These results can help a subject to regulate sleep and recognize different sleeping disorders. In this work, a sensor grid for pressure and movement detection supporting sleep phase analysis is proposed. In comparison to the leading standard measuring system, which is Polysomnography (PSG), the system proposed in this project is a non-invasive sleep monitoring device. For continuous analysis or home use, the PSG or wearable Actigraphy devices tends to be uncomfortable. Besides this fact, they are also very expensive. The system represented in this work classifies respiration and body movement with only one type of sensor and also in a non-invasive way. The sensor used is a pressure sensor. This sensor is low cost and can be used for commercial proposes. The system was tested by carrying out an experiment that recorded the sleep process of a subject. These recordings showed the potential for classification of breathing rate and body movements. Although previous researches show the use of pressure sensors in recognizing posture and breathing, they have been mostly used by positioning the sensors between the mattress and bedsheet. This project however, shows an innovative way to position the sensors under the mattress.
This paper presents a bed system able to analyze a person’s movement, breathing and recognize the positions that the subject is lying on the bed during the night without any additional physical contact. The measurements are performed with sensors placed between the mattress and the bed-frame. An Intel Edison board was used as an endpoint that served as a communication node from the mesh network to external service. Two nodes and Intel Edison are attached to the bottom of the bed frame and they are connected to the sensors. First test results have indicated the potential of the proposed approach for the recognition of sleep positions with 83% of correct recognized positions.
Das häusliche Umfeld kann vor allem für langfristiges Schlafmonitoring verwendet werden. Gute Patientenakzeptanz erfordert niedrige Nutzer- und Installationsbarrieren. Für die Installation zu Hause sind klassische PSG-Systeme aufgrund von ihrer Komplexität wenig passend. Ziel der Entwicklung ist die qualifizierte Erhebung von Parametern, die einerseits eine hinreichend gute Klassifikation von Schlafphasen erlauben und die andererseits durch nicht-invasive Methoden erfasst werden können.
Basierend auf einer Literaturstudie und der Maßgabe nicht-invasive Methoden zu nutzen, wurden folgende Parameter ausgewählt: Körperbewegung, Atmung und Herzschlag. Diese Parameter können nicht-invasiv durch Matratzendrucksensoren erfasst werden. Die Sensorknoten sind als ein Netz von Drucksensoren implementiert, die mit einem leistungsarmen und performanten Mikrocontroller verbunden sind. Alle Knoten sind über einen systemweiten Bus mit Adressarbitrierung verbunden. Der eingebettete Prozessor ist der Mesh-Netzwerk-Endpunkt, der die Netzwerkkonfiguration, Speicherung und Vorverarbeitung der Daten, externen Datenzugriff und Visualisierung ermöglicht.
Das System wurde getestet, indem Experimente durchgeführt wurden, die den Schlaf verschiedener gesunder junger Personen aufzeichneten. Die erhaltenen Ergebnisse bestätigen die Fähigkeit des Systems, Atemfrequenz und Körperbewegung zu erfassen. Ein wesentlicher Unterschied dieses Systems im Vergleich zu anderen Ansätzen ist die innovative Art, die Sensoren unter der Matratze zu platzieren. Diese Eigenschaft erleichtert die kontinuierliche Nutzung des Systems ohne Einfluss auf den gemeinsamen Schlafprozess.
Um Schlafverhalten langfristig zu untersuchen, wird ein Hardwaresystem mit niedrigen Installationsbarrieren für den Einsatz im häuslichen Umfeld. Erste Ergebnisse weisen auf das Potenzial hin, außer Körperbewegung und Atemfrequenz, auch Herzfrequenz erfassen zu können. Die Werte können weiter verbessert werden, wenn die Sensorabfragefrequenz erhöht wird. Nach der Weiterentwicklung des Systems, soll es mit dem Softwarealgorithmus für die Schlafphasenerkennung verbunden werden.