Refine
Document Type
- Conference Proceeding (49)
- Article (9)
- Doctoral Thesis (1)
- Other Publications (1)
Keywords
- AAL (3)
- Accelerometers (1)
- Accessibility (1)
- Accessible Tourism (1)
- Ambient assisted living (2)
- Apnoe (1)
- Assisted living (1)
- Assistive systems (1)
- Atmung (2)
- Atmungssignal (1)
Objective: This paper presents an algorithm for non-invasive sleep stage identification using respiratory, heart rate and movement signals. The algorithm is part of a system suitable for long-term monitoring in a home environment, which should support experts analysing sleep. Approach: As there is a strong correlation between bio-vital signals and sleep stages, multinomial logistic regression was chosen for categorical distribution of sleep stages. Several derived parameters of three signals (respiratory, heart rate and movement) are input for the proposed method. Sleep recordings of five subjects were used for the training of a machine learning model and 30 overnight recordings collected from 30 individuals with about 27 000 epochs of 30 s intervals each were evaluated. Main results: The achieved rate of accuracy is 72% for Wake, NREM, REM (with Cohen's kappa value 0.67) and 58% for Wake, Light (N1 and N2), Deep (N3) and REM stages (Cohen's kappa is 0.50). Our approach has confirmed the potential of this method and disclosed several ways for its improvement. Significance: The results indicate that respiratory, heart rate and movement signals can be used for sleep studies with a reasonable level of accuracy. These inputs can be obtained in a non-invasive way applying it in a home environment. The proposed system introduces a convenient approach for a long-term monitoring system which could support sleep laboratories. The algorithm which was developed allows for an easy adjustment of input parameters that depend on available signals and for this reason could also be used with various hardware systems.
This paper presents a bed system able to analyze a person’s movement, breathing and recognize the positions that the subject is lying on the bed during the night without any additional physical contact. The measurements are performed with sensors placed between the mattress and the bed-frame. An Intel Edison board was used as an endpoint that served as a communication node from the mesh network to external service. Two nodes and Intel Edison are attached to the bottom of the bed frame and they are connected to the sensors. First test results have indicated the potential of the proposed approach for the recognition of sleep positions with 83% of correct recognized positions.
Das häusliche Umfeld kann vor allem für langfristiges Schlafmonitoring verwendet werden. Gute Patientenakzeptanz erfordert niedrige Nutzer- und Installationsbarrieren. Für die Installation zu Hause sind klassische PSG-Systeme aufgrund von ihrer Komplexität wenig passend. Ziel der Entwicklung ist die qualifizierte Erhebung von Parametern, die einerseits eine hinreichend gute Klassifikation von Schlafphasen erlauben und die andererseits durch nicht-invasive Methoden erfasst werden können.
Basierend auf einer Literaturstudie und der Maßgabe nicht-invasive Methoden zu nutzen, wurden folgende Parameter ausgewählt: Körperbewegung, Atmung und Herzschlag. Diese Parameter können nicht-invasiv durch Matratzendrucksensoren erfasst werden. Die Sensorknoten sind als ein Netz von Drucksensoren implementiert, die mit einem leistungsarmen und performanten Mikrocontroller verbunden sind. Alle Knoten sind über einen systemweiten Bus mit Adressarbitrierung verbunden. Der eingebettete Prozessor ist der Mesh-Netzwerk-Endpunkt, der die Netzwerkkonfiguration, Speicherung und Vorverarbeitung der Daten, externen Datenzugriff und Visualisierung ermöglicht.
Das System wurde getestet, indem Experimente durchgeführt wurden, die den Schlaf verschiedener gesunder junger Personen aufzeichneten. Die erhaltenen Ergebnisse bestätigen die Fähigkeit des Systems, Atemfrequenz und Körperbewegung zu erfassen. Ein wesentlicher Unterschied dieses Systems im Vergleich zu anderen Ansätzen ist die innovative Art, die Sensoren unter der Matratze zu platzieren. Diese Eigenschaft erleichtert die kontinuierliche Nutzung des Systems ohne Einfluss auf den gemeinsamen Schlafprozess.
Um Schlafverhalten langfristig zu untersuchen, wird ein Hardwaresystem mit niedrigen Installationsbarrieren für den Einsatz im häuslichen Umfeld. Erste Ergebnisse weisen auf das Potenzial hin, außer Körperbewegung und Atemfrequenz, auch Herzfrequenz erfassen zu können. Die Werte können weiter verbessert werden, wenn die Sensorabfragefrequenz erhöht wird. Nach der Weiterentwicklung des Systems, soll es mit dem Softwarealgorithmus für die Schlafphasenerkennung verbunden werden.
The overall goal of this work is to detect and analyze a person's movement, breathing and heart rate during sleep in a common bed overnight without any additional physical contact. The measurement is performed with the help of
sensors placed between the mattress and the frame. A two-stage pattern classification algorithm based has been implemented that applies statistics analysis to recognize the position of patients. The system is implemented in a sensors-network, hosting several nodes and communication end-points to support quick and efficient classification. The overall tests show convincing results for the position recognition and a reasonable overlap in matching.
Sleep study can be used for detection of sleep quality and in general bed behaviors. These results can helpful for regulating sleep and recognizing different sleeping disorders of human. In comparison to the leading standard measuring system, which is Polysomnography (PSG), the system proposed in this work is a non-invasive sleep monitoring device. For continuous analysis or home use, the PSG or wearable Actigraphy devices tends to be uncomfortable. Besides, these methods not only decrease practicality due to the process of having to put them on, but they are also very expensive. The system proposed in this paper classifies respiration and body movement with only one type of sensor and also in a noninvasive way. The sensor used is a pressure sensor. This sensor is low cost and can be used for commercial proposes. The system was tested by carrying out an experiment that recorded the sleep process of a subject. These recordings showed excellent results in the classification of breathing rate and body movements.
Long-term sleep monitoring can be done primarily in the home environment. Good patient acceptance requires low user and installation barriers. The selection of parameters in this approach is significantly limited compared to a PSG session. The aim is a qualified selection of parameters, which on the one hand allow a sufficiently good classification of sleep phases and on the other hand can be detected by non-invasive methods.
The process of restoring our body and brain from fatigue is directly depend-ing on the quality of sleep. It can be determined from the report of the sleep study results. Classification of sleep stages is the first step of this study and this includes the measurement of biovital data and its further processing.
In this work, the sleep analysis system is based on a hardware sensor net, namely a grid of 24 pressure sensors, supporting sleep phase recognition. In comparison to the leading standard, which is polysomnography, the proposed approach is a non-invasive system. It recognises respiration and body move-ment with only one type of low-cost pressure sensors forming a mesh archi-tecture. The nodes implement as a series of pressure sensors connected to a low-power and performant microcontroller. All nodes are connected via a system wide bus with address arbitration. The embedded processor is the mesh network endpoint that enables network configuration, storing and pre-processing of the data, external data access and visualization.
The system was tested by executing experiments recording the sleep of different healthy young subjects. The results obtained have indicated the po-tential to detect breathing rate and body movement. A major difference of this system in comparison to other approaches is the innovative way to place the sensors under the mattress. This characteristic facilitates the continuous using of the system without any influence on the common sleep process.