Refine
Document Type
- Conference Proceeding (9)
- Article (4)
- Doctoral Thesis (1)
- Other Publications (1)
- Patent (1)
Has Fulltext
- no (16)
Keywords
- Channel estimation (1)
- Data compression (2)
- Decoding (1)
- Error correction (1)
- Error correction codes (2)
- Flash memories (3)
- Huffman codes (1)
- Integrated circuit reliability (1)
- Redundancy (2)
Institute
This work investigates data compression algorithms for applications in non-volatile flash memories. The main goal of the data compression is to minimize the amount of user data such that the redundancy of the error correction coding can be increased and the reliability of the error correction can be improved. A compression algorithm is proposed that combines a modified move-to-front algorithm with Huffman coding. The proposed data compression algorithm has low complexity, but provides a compression gain comparable to the Lempel-Ziv-Welch algorithm.
These days computer analysis of ECG (Electrocardiograms) signals is common. There are many real-time QRS recognition algorithms; one of these algorithms is Pan-Tompkins Algorithm. Which the Pan-Tompkins Algorithm can detect QRS complexes of ECG signals. The proposed algorithm is analysed the data stream of the heartbeat based on the digital analysis of the amplitude, the bandwidth, and the slope. In addition to that, the stress algorithm compares whether the current heartbeat is similar or different to the last heartbeat after detecting the ECG signals. This algorithm determines the stress detection for the patient on the real-time. In order to implement the new algorithm with higher performance, the parallel programming language CUDA is used. The algorithm determines stress at the same time by determining the RR interval. The algorithm uses a different function as beat detector and a beat classifier of stress.
This contribution presents a data compression scheme for applications in non-volatile flash memories. The objective of the data compression algorithm is to reduce the amount of user data such that the redundancy of the error correction coding can be increased in order to improve the reliability of the data storage system. The data compression is performed on block level considering data blocks of 1 kilobyte. We present an encoder architecture that has low memory requirements and provides a fast data encoding.
Embodiments are generally related to the field of channel and source coding of data to be sent over a channel, such as a communication link or a data memory. Some specific embodiments are related to a method of encoding data for transmission over a channel, a corresponding decoding method, a coding device for performing one or both of these methods and a computer program comprising instructions to cause said coding device to perform one or both of said methods.
Error correction coding based on soft-input decoding can significantly improve the reliability of non-volatile flash memories. This work proposes a soft-input decoder for generalized concatenated (GC) codes. GC codes are well suited for error correction in flash memories for high reliability data storage. We propose GC codes constructed from inner extended binary Bose-Chaudhuri-Hocquenghem (BCH) codes and outer Reed-Solomon codes. The extended BCH codes enable an efficient hard-input decoding. Furthermore, a low-complexity soft-input decoding method is proposed. This bit-flipping decoder uses a fixed number of test patterns and an algebraic decoder for soft-decoding. An acceptance criterion for the final candidate codeword is proposed. Combined with error and erasure decoding of the outer Reed-Solomon codes, this acceptance criterion can improve the decoding performance and reduce the decoding complexity. The presented simulation results show that the proposed bit-flipping decoder in combination with outer error and erasure decoding can outperform maximum likelihood decoding of the inner codes.
The introduction of multiple-level cell (MLC) and triple-level cell (TLC) technologies reduced the reliability of flash memories significantly compared with single-level cell flash. With MLC and TLC flash cells, the error probability varies for the different states. Hence, asymmetric models are required to characterize the flash channel, e.g., the binary asymmetric channel (BAC). This contribution presents a combined channel and source coding approach improving the reliability of MLC and TLC flash memories. With flash memories data compression has to be performed on block level considering short-data blocks. We present a coding scheme suitable for blocks of 1 kB of data. The objective of the data compression algorithm is to reduce the amount of user data such that the redundancy of the error correction coding can be increased in order to improve the reliability of the data storage system. Moreover, data compression can be utilized to exploit the asymmetry of the channel to reduce the error probability. With redundant data, the proposed combined coding scheme results in a significant improvement of the program/erase cycling endurance and the data retention time of flash memories.
Generalized concatenated (GC) codes with soft-input decoding were recently proposed for error correction in flash memories. This work proposes a soft-input decoder for GC codes that is based on a low-complexity bit-flipping procedure. This bit-flipping decoder uses a fixed number of test patterns and an algebraic decoder for soft-input decoding. An acceptance criterion for the final candidate codeword is proposed. Combined with error and erasure decoding of the outer Reed-Solomon codes, this bit-flipping decoder can improve the decoding performance and reduce the decoding complexity compared to the previously proposed sequential decoding. The bit-flipping decoder achieves a decoding performance similar to a maximum likelihood decoder for the inner codes.
Error correction coding (ECC) for optical communication and persistent storage systems require high rate codes that enable high data throughput and low residual errors. Recently, different concatenated coding schemes were proposed that are based on binary Bose-Chaudhuri-Hocquenghem (BCH) codes that have low error correcting capabilities. Commonly, hardware implementations for BCH decoding are based on the Berlekamp-Massey algorithm (BMA). However, for single, double, and triple error correcting BCH codes, Peterson's algorithm can be more efficient than the BMA. The known hardware architectures of Peterson's algorithm require Galois field inversion. This inversion dominates the hardware complexity and limits the decoding speed. This work proposes an inversion-less version of Peterson's algorithm. Moreover, a decoding architecture is presented that is faster than decoders that employ inversion or the fully parallel BMA at a comparable circuit size.