## Institut für Systemdynamik - ISD

### Refine

#### Document Type

- Conference Proceeding (47)
- Article (23)
- Doctoral Thesis (7)
- Master's Thesis (2)
- Patent (1)
- Report (1)

#### Keywords

- 360-degree coverage (1)
- 3D Extended Object Tracking (EOT) (2)
- Actuators (2)
- Adaptive (1)
- Adaptive birth density (1)
- Aerobic fermentation (1)
- Automated Docking of Vessels (1)
- Beobachterentwurf (1)
- Bernoulli filter (1)
- Binary codes (1)

#### Institute

Multi-object tracking filters require a birth density to detect new objects from measurement data. If the initial positions of new objects are unknown, it may be useful to choose an adaptive birth density. In this paper, a circular birth density is proposed, which is placed like a band around the surveillance area. This allows for 360° coverage. The birth density is described in polar coordinates and considers all point-symmetric quantities such as radius, radial velocity and tangential velocity of objects entering the surveillance area. Since it is assumed that these quantities are unknown and may vary between different targets, detected trajectories, and in particular their initial states, are used to estimate the distribution of initial states. The adapted birth density is approximated as a Gaussian mixture, so that it can be used for filters operating on Cartesian coordinates.

This work presents a new concept to implement the elliptic curve point multiplication (PM). This computation is based on a new modular arithmetic over Gaussian integer fields. Gaussian integers are a subset of the complex numbers such that the real and imaginary parts are integers. Since Gaussian integer fields are isomorphic to prime fields, this arithmetic is suitable for many elliptic curves. Representing the key by a Gaussian integer expansion is beneficial to reduce the computational complexity and the memory requirements of secure hardware implementations, which are robust against attacks. Furthermore, an area-efficient coprocessor design is proposed with an arithmetic unit that enables Montgomery modular arithmetic over Gaussian integers. The proposed architecture and the new arithmetic provide high flexibility, i.e., binary and non-binary key expansions as well as protected and unprotected PM calculations are supported. The proposed coprocessor is a competitive solution for a compact ECC processor suitable for applications in small embedded systems.

This paper describes an early lumping approach for generating a mathematical model of the heating process of a moving dual-layer substrate. The heat is supplied by convection and nonlinearly distributed over the whole considered spatial extend of the substrate. Using CFD simulations as a reference, two different modelling approaches have been investigated in order to achieve the most suitable model type. It is shown that due to the possibility of using the transition matrix for time discretization, an equivalent circuit model achieves superior results when compared to the Crank-Nicolson method. In order to maintain a constant sampling time for the in-visioned-control strategies, the effect of variable speed is transformed into a system description, where the state vector has constant length but a variable number of non-zero entries. The handling of the variable transport speed during the heating process is considered as the main contribution of this work. The result is a model, suitable for being used in future control strategies.

Modeling a suitable birth density is a challenge when using Bernoulli filters such as the Labeled Multi-Bernoulli (LMB) filter. The birth density of newborn targets is unknown in most applications, but must be given as a prior to the filter. Usually the birth density stays unchanged or is designed based on the measurements from previous time steps.
In this paper, we assume that the true initial state of new objects is normally distributed. The expected value and covariance of the underlying density are unknown parameters. Using the estimated multi-object state of the LMB and the Rauch-Tung-Striebel (RTS) recursion, these parameters are recursively estimated and adapted after a target is detected.
The main contribution of this paper is an algorithm to estimate the parameters of the birth density and its integration into the LMB framework. Monte Carlo simulations are used to evaluate the detection driven adaptive birth density in two scenarios. The approach can also be applied to filters that are able to estimate trajectories.

Error correction coding (ECC) for optical communication and persistent storage systems require high rate codes that enable high data throughput and low residual errors. Recently, different concatenated coding schemes were proposed that are based on binary Bose-Chaudhuri-Hocquenghem (BCH) codes that have low error correcting capabilities. Commonly, hardware implementations for BCH decoding are based on the Berlekamp-Massey algorithm (BMA). However, for single, double, and triple error correcting BCH codes, Peterson's algorithm can be more efficient than the BMA. The known hardware architectures of Peterson's algorithm require Galois field inversion. This inversion dominates the hardware complexity and limits the decoding speed. This work proposes an inversion-less version of Peterson's algorithm. Moreover, a decoding architecture is presented that is faster than decoders that employ inversion or the fully parallel BMA at a comparable circuit size.

The McEliece cryptosystem is a promising candidate for post-quantum public-key encryption. In this work, we propose q-ary codes over Gaussian integers for the McEliece system and a new channel model. With this one Mannheim error channel, errors are limited to weight one. We investigate the channel capacity of this channel and discuss its relation to the McEliece system. The proposed codes are based on a simple product code construction and have a low complexity decoding algorithm. For the one Mannheim error channel, these codes achieve a higher error correction capability than maximum distance separable codes with bounded minimum distance decoding. This improves the work factor regarding decoding attacks based on information-set decoding.

A constructive method for the design of nonlinear observers is discussed. To formulate conditions for the construction of the observer gains, stability results for nonlinear singularly perturbed systems are utilised. The nonlinear observer is designed directly in the given coordinates, where the error dynamics between the plant and the observer becomes singularly perturbed by a high-gain part of the observer injection, and the information of the slow manifold is exploited to construct the observer gains of the reduced-order dynamics. This is in contrast to typical high-gain observer approaches, where the observer gains are chosen such that the nonlinearities are dominated by a linear system. It will be demonstrated that the considered approach is particularly suited for self-sensing electromechanical systems. Two variants of the proposed observer design are illustrated for a nonlinear electromagnetic actuator, where the mechanical quantities, i.e. the position and the velocity, are not measured

Generalized concatenated (GC) codes with soft-input decoding were recently proposed for error correction in flash memories. This work proposes a soft-input decoder for GC codes that is based on a low-complexity bit-flipping procedure. This bit-flipping decoder uses a fixed number of test patterns and an algebraic decoder for soft-input decoding. An acceptance criterion for the final candidate codeword is proposed. Combined with error and erasure decoding of the outer Reed-Solomon codes, this bit-flipping decoder can improve the decoding performance and reduce the decoding complexity compared to the previously proposed sequential decoding. The bit-flipping decoder achieves a decoding performance similar to a maximum likelihood decoder for the inner codes.

The introduction of multiple-level cell (MLC) and triple-level cell (TLC) technologies reduced the reliability of flash memories significantly compared with single-level cell flash. With MLC and TLC flash cells, the error probability varies for the different states. Hence, asymmetric models are required to characterize the flash channel, e.g., the binary asymmetric channel (BAC). This contribution presents a combined channel and source coding approach improving the reliability of MLC and TLC flash memories. With flash memories data compression has to be performed on block level considering short-data blocks. We present a coding scheme suitable for blocks of 1 kB of data. The objective of the data compression algorithm is to reduce the amount of user data such that the redundancy of the error correction coding can be increased in order to improve the reliability of the data storage system. Moreover, data compression can be utilized to exploit the asymmetry of the channel to reduce the error probability. With redundant data, the proposed combined coding scheme results in a significant improvement of the program/erase cycling endurance and the data retention time of flash memories.

The Lempel-Ziv-Welch (LZW) algorithm is an important dictionary-based data compression approach that is used in many communication and storage systems. The parallel dictionary LZW (PDLZW) algorithm speeds up the LZW encoding by using multiple dictionaries. The PDLZW algorithm applies different dictionaries to store strings of different lengths, where each dictionary stores only strings of the same length. This simplifies the parallel search in the dictionaries for hardware implementations. The compression gain of the PDLZW depends on the partitioning of the address space, i.e. on the sizes of the parallel dictionaries. However, there is no universal partitioning that is optimal for all data sources. This work proposes an address space partitioning technique that optimizes the compression rate of the PDLZW using a Markov model for the data. Numerical results for address spaces with 512, 1024, and 2048 entries demonstrate that the proposed partitioning improves the performance of the PDLZW compared with the original proposal.

Acoustic Echo Cancellation (AEC) plays a crucial role in speech communication devices to enable full-duplex communication. AEC algorithms have been studied extensively in the literature. However, device specific details like microphone or loudspeaker configurations are often neglected, despite their impact on the echo attenuation or near-end speech quality. In this work, we propose a method to investigate different loudspeaker-microphone configurations with respect to their contribution to the overall AEC performance. A generic AEC system consisting of an adaptive filter and a Wiener post filter is used for a fair comparison between different setups. We propose the near-end-to-residual-echo ratio (NRER) and the attenuation-of-near-end (AON) as quality measures for the full-duplex AEC performance.

Algorithms and Architectures for Cryptography and Source Coding in Non-Volatile Flash Memories
(2021)

In this work, algorithms and architectures for cryptography and source coding are developed, which are suitable for many resource-constrained embedded systems such as non-volatile flash memories. A new concept for elliptic curve cryptography is presented, which uses an arithmetic over Gaussian integers. Gaussian integers are a subset of the complex numbers with integers as real and imaginary parts. Ordinary modular arithmetic over Gaussian integers is computational expensive. To reduce the complexity, a new arithmetic based on the Montgomery reduction is presented. For the elliptic curve point multiplication, this arithmetic over Gaussian integers improves the computational efficiency, the resistance against side channel attacks, and reduces the memory requirements. Furthermore, an efficient variant of the Lempel-Ziv-Welch (LZW) algorithm for universal lossless data compression is investigated. Instead of one LZW dictionary, this algorithm applies several dictionaries to speed up the encoding process. Two dictionary partitioning techniques are introduced that improve the compression rate and reduce the memory size of this parallel dictionary LZW algorithm.

In this work, we investigate a hybrid decoding approach that combines algebraic hard-input decoding of binary block codes with soft-input decoding. In particular, an acceptance criterion is proposed which determines the reliability of a candidate codeword. For many received codewords the stopping criterion indicates that the hard-decoding result is sufficiently reliable, and the costly soft-input decoding can be omitted. The proposed acceptance criterion significantly reduces the decoding complexity. For simulations we combine the algebraic hard-input decoding with ordered statistics decoding, which enables near maximum likelihood soft-input decoding for codes of small to medium block lengths.

Many resource-constrained systems still rely on symmetric cryptography for verification and authentication. Asymmetric cryptographic systems provide higher security levels, but are very computational intensive. Hence, embedded systems can benefit from hardware assistance, i.e., coprocessors optimized for the required public key operations. In this work, we propose an elliptic curve cryptographic coprocessors design for resource-constrained systems. Many such coprocessor designs consider only special (Solinas) prime fields, which enable a low-complexity modulo arithmetic. Other implementations support arbitrary prime curves using the Montgomery reduction. These implementations typically require more time for the point multiplication. We present a coprocessor design that has low area requirements and enables a trade-off between performance and flexibility. The point multiplication can be performed either using a fast arithmetic based on Solinas primes or using a slower, but flexible Montgomery modular arithmetic.

Kapitel 2 der vorliegenden Arbeit beschreibt die theoretischen Grundlagen optimaler Regelung und die unterschiedlichen Methoden des Pfadintegral Frameworks zur Reglersynthese. Zudem wird ein Ansatz zur Erweiterung des stochastischen NMPC dargestellt, sodass eine Adaption an eine real vorliegende Systemdynamik erfolgt. Weiter wird eine Methode entwickelt und beschrieben, welche die Effizienz des Algorithmus stark erhöht.
In Kapitel 3 wird aufgezeigt, wie die Pfadintegral Regelung dazu genutzt wird ein Furuta Pendel aufzuschwingen.
In Kapitel 4 werden die Algorithmen zur Lösung unterschiedlicher Problemstellungen im Kontext eines Forschungsboot appliziert. So wird unter anderem gezeigt, wie ein Pfadintegral Regelungsalgorithmus genutzt werden kann, um autonom mit dem Forschungsboot Solgenia am Steg der HTWG Konstanz anzulegen.
Abschließend wird in Kapitel 5 ein Fazit aus den Ergebnissen gezogen, diese eingeordnet und ein Ausblick auf weitere mögliche Arbeiten gegeben.

It is well known that signal constellations which are based on a hexagonal grid, so-called Eisenstein constellations, exhibit a performance gain over conventional QAM ones. This benefit is realized by a packing and shaping gain of the Eisenstein (hexagonal) integers in comparison to the Gaussian (complex) integers. Such constellations are especially relevant in transmission schemes that utilize lattice structures, e.g., in MIMO communications. However, for coded modulation, the straightforward approach is to combine Eisenstein constellations with ternary channel codes. In this paper, a multilevel-coding approach is proposed where encoding and multistage decoding can directly be performed with state-of-the-art binary channel codes. An associated mapping and a binary set partitioning are derived. The performance of the proposed approach is contrasted to classical multilevel coding over QAM constellations. To this end, both the single-user AWGN scenario and the (multiuser) MIMO broadcast scenario using lattice-reduction-aided preequalization are considered. Results obtained from numerical simulations with LDPC codes complement the theoretical aspects.

The reliability of flash memories suffers from various error causes. Program/erase cycles, read disturb, and cell to cell interference impact the threshold voltages and cause bit errors during the read process. Hence, error correction is required to ensure reliable data storage. In this work, we investigate the bit-labeling of triple level cell (TLC) memories. This labeling determines the page capacities and the latency of the read process. The page capacity defines the redundancy that is required for error correction coding. Typically, Gray codes are used to encode the cell state such that the codes of adjacent states differ in a single digit. These Gray codes minimize the latency for random access reads but cannot balance the page capacities. Based on measured voltage distributions, we investigate the page capacities and propose a labeling that provides a better rate balancing than Gray labeling.

NAND flash memory is widely used for data storage due to low power consumption, high throughput, short random access latency, and high density. The storage density of the NAND flash memory devices increases from one generation to the next, albeit at the expense of storage reliability.
Our objective in this dissertation is to improve the reliability of the NAND flash memory with a low hard implementation cost. We investigate the error characteristic, i.e. the various noises of the NAND flash memory. Based on the error behavior at different life-aging stages, we develop offset calibration techniques that minimize the bit error rate (BER).
Furthermore, we introduce data compression to reduce the write amplification effect and support the error correction codes (ECC) unit. In the first scenario, the numerical results show that the data compression can reduce the wear-out by minimizing the amount of data that is written to the flash. In the ECC scenario, the compression gain is used to improve the ECC capability. Based on the first scenario, the write amplification effect can be halved for the considered target flash and data model. By combining the ECC and data compression, the NAND flash memory lifetime improves three fold compared with uncompressed data for the same data model.
In order to improve the data reliability of the NAND flash memory, we investigate different ECC schemes based on concatenated codes like product codes, half-product codes, and generalized concatenated codes (GCC). We propose a construction for high-rate GCC for hard-input decoding. ECC based on soft-input decoding can significantly improve the reliability of NAND flash memories. Therefore, we propose a low-complexity soft-input decoding algorithm for high-rate GCC.

Flash memories are non-volatile memory devices. The rapid development of flash technologies leads to higher storage density, but also to higher error rates. This dissertation considers this reliability problem of flash memories and investigates suitable error correction codes, e.g. BCH-codes and concatenated codes. First, the flash cells, their functionality and error characteristics are explained. Next, the mathematics of the employed algebraic code are discussed. Subsequently, generalized concatenated codes (GCC) are presented. Compared to the commonly used BCH codes, concatenated codes promise higher code rates and lower implementation complexity. This complexity reduction is achieved by dividing a long code into smaller components, which require smaller Galois-Field sizes. The algebraic decoding algorithms enable analytical determination of the block error rate. Thus, it is possible to guarantee very low residual error rates for flash memories. Besides the complexity reduction, general concatenated codes can exploit soft information. This so-called soft decoding is not practicable for long BCH-codes. In this dissertation, two soft decoding methods for GCC are presented and analyzed. These methods are based on the Chase decoding and the stack algorithm. The last method explicitly uses the generalized concatenated code structure, where the component codes are nested subcodes. This property supports the complexity reduction. Moreover, the two-dimensional structure of GCC enables the correction of error patterns with statistical dependencies. One chapter of the thesis demonstrates how the concatenated codes can be used to correct two-dimensional cluster errors. Therefore, a two-dimensional interleaver is designed with the help of Gaussian integers. This design achieves the correction of cluster errors with the best possible radius. Large parts of this works are dedicated to the question, how the decoding algorithms can be implemented in hardware. These hardware architectures, their throughput and logic size are presented for long BCH-codes and generalized concatenated codes. The results show that generalized concatenated codes are suitable for error correction in flash memories, especially for three-dimensional NAND memory systems used in industrial applications, where low residual errors must be guaranteed.

Code-based cryptosystems are promising candidates for post-quantum cryptography. Recently, generalized concatenated codes over Gaussian and Eisenstein integers were proposed for those systems. For a channel model with errors of restricted weight, those q-ary codes lead to high error correction capabilities. Hence, these codes achieve high work factors for information set decoding attacks. In this work, we adapt this concept to codes for the weight-one error channel, i.e., a binary channel model where at most one bit-error occurs in each block of m bits. We also propose a low complexity decoding algorithm for the proposed codes. Compared to codes over Gaussian and Eisenstein integers, these codes achieve higher minimum Hamming distances for the dual codes of the inner component codes. This property increases the work factor for a structural attack on concatenated codes leading to higher overall security. For comparable security, the key size for the proposed code construction is significantly smaller than for the classic McEliece scheme based on Goppa codes.

Large-scale quantum computers threaten today's public-key cryptosystems. The code-based McEliece and Niederreiter cryptosystems are among the most promising candidates for post-quantum cryptography. Recently, a new class of q-ary product codes over Gaussian integers together with an efficient decoding algorithm were proposed for the McEliece cryptosystems. It was shown that these codes achieve a higher work factor for information-set decoding attacks than maximum distance separable (MDS) codes with comparable length and dimension. In this work, we adapt this q-ary product code construction to codes over Eisenstein integers. We propose a new syndrome decoding method which is applicable for Niederreiter cryptosystems. The code parameters and work factors for information-set decoding are comparable to codes over Gaussian integers. Hence, the new construction is not favorable for the McEliece system. Nevertheless, it is beneficial for the Niederreiter system, where it achieves larger message lengths. While the Niederreiter and McEliece systems have the same level of security, the Niederreiter system can be advantageous for some applications, e.g., it enables digital signatures. The proposed coding scheme is interesting for lightweight Niederreiter cryptosystems and embedded security due to the short code lengths and low decoding complexity.

Spatial modulation is a low-complexity multipleinput/ multipleoutput transmission technique. The recently proposed spatial permutation modulation (SPM) extends the concept of spatial modulation. It is a coding approach, where the symbols are dispersed in space and time. In the original proposal of SPM, short repetition codes and permutation codes were used to construct a space-time code. In this paper, we propose a similar coding scheme that combines permutation codes with codes over Gaussian integers. Short codes over Gaussian integers have good distance properties. Furthermore, the code alphabet can directly be applied as signal constellation, hence no mapping is required. Simulation results demonstrate that the proposed coding approach outperforms SPM with repetition codes.

Comparison and Identifiability Analysis of Friction Models for the Dither Motion of a Solenoid
(2018)

In this paper, the mechanical subsystem of a proportional solenoid excited by a dither signal is considered. The objective is to find a suitable friction model that reflects the characteristic mechanical properties of the dynamic system. Several different friction models from the literature are compared. The friction models are evaluated with respect to their accuracy as well as their practical identifiability, the latter being quantified based on the Fisher information matrix.

In this paper, a systematic comparison of three different advanced control strategies for automated docking of a vessel is presented. The controllers are automatically tuned offline by applying an optimization process using simulations of the whole system including trajectory planner and state and disturbance observer. Then investigations are conducted subject to performance and robustness using Monte Carlos simulation with varying model parameters and disturbances. The control strategies have also been tested in full scale experiments using the solar research vessel Solgenia. The investigated control strategies all have demonstrated very good performance in both, simulation and real world experiments. Videos are available under https://www.htwg-konstanz.de/forschung-und-transfer/institute-und-labore/isd/regelungstechnik/videos/

This paper presents a systematic comparison of different advanced approaches for motion prediction of vessels for docking scenarios. Therefore, a conventional nonlinear gray-box-model, its extension to a hybrid model using an additional regression neural network (RNN) and a black-box-model only based on a RNN are compared. The optimal hyperparameters are found by grid search. The training and validation data for the different models is collected in full-scale experiments using the solar research vessel Solgenia. The performances of the different prediction models are compared in full-scale scenarios. %To use the investigated approaches for controller design, a general optimal control problem containing the advanced models is described. These can improve advanced control strategies e.g., nonlinear model predictive control (NMPC) or reinforcement learning (RL). This paper explores the question of what the advantages and disadvantages of the different presented prediction approaches are and how they can be used to improve the docking behavior of a vessel.

The encoding of antenna patterns with generalized spatial modulation as well as other index modulation techniques require w-out-of-n encoding where all binary vectors of length n have the same weight w. This constant-weight property cannot be obtained by conventional linear coding schemes. In this work, we propose a new class of constant-weight codes that result from the concatenation of convolutional codes with constant-weight block codes. These constant-weight convolutional codes are nonlinear binary trellis codes that can be decoded with the Viterbi algorithm. Some constructed constant-weight convolutional codes are optimum free distance codes. Simulation results demonstrate that the decoding performance with Viterbi decoding is close to the performance of the best-known linear codes. Similarly, simulation results for spatial modulation with a simple on-off keying show a significant coding gain with the proposed coded index modulation scheme.

Simon Grimm examines new multi-microphone signal processing strategies that aim to achieve noise reduction and dereverberation. Therefore, narrow-band signal enhancement approaches are combined with broad-band processing in terms of directivity based beamforming. Previously introduced formulations of the multichannel Wiener filter rely on the second order statistics of the speech and noise signals. The author analyses how additional knowledge about the location of a speaker as well as the microphone arrangement can be used to achieve further noise reduction and dereverberation.

In this paper, the problem of controlling the dissolved oxygen level (DO) during an aerobic fermentation is considered. The proposed approach deals with three major difficulties in respect to the nonlinear dynamics of the DO, the poor accuracy of the empirical models for the oxygen consumption rate and the fact that only sampled measurements are available on-line. A nonlinear integral high-gain control law including a continuous-discrete time observer is designed to keep the DO in the neighborhood of a set point value without any knowledge on the dissolved oxygen consumption rate. The local stability of the control algorithm is proved using Lyapunov tools. The performance of the control scheme is first analyzed in simulation and then experimentally evaluated during a successfull fermentation of the bacteria over a period of three days. Pseudomonas putida mt-2

Docking Control of a Fully-Actuated Autonomous Vessel using Model Predictive Path Integral Control
(2022)

This paper presents the docking control of an autonomous vessel using the nonlinear Model Predictive Path Integral (MPPI) approach. This algorithm is based on a path integral over stochastic trajectories and can be parallelized easily. The controller parameters are tuned offline using knowledge of the system and simulations, including nonlinear state and disturbance observer. The cost function implicitly contains information regarding the surrounding of the docking position. This approach allows continuous optimization of the trajectory with respect to the system state, disturbance state and actuator dynamics. The control strategy has been tested in full-scale experiments using the solar research vessel Solgenia. The investigated MPPI controller has demonstrated excellent performance in both, simulation and real-world experiments. This paper addresses the question of how the MPPI algorithm can be applied to dock a fully-actuated vessel and what benefits its application achieves.

The Lempel–Ziv–Welch (LZW) algorithm is an important dictionary-based data compression approach that is used in many communication and storage systems. The parallel dictionary LZW (PDLZW) algorithm speeds up the LZW encoding by using multiple dictionaries. This simplifies the parallel search in the dictionaries. However, the compression gain of the PDLZW depends on the partitioning of the address space, i.e. on the sizes of the parallel dictionaries. This work proposes an address space partitioning technique that optimises the compression rate of the PDLZW. Numerical results for address spaces with 512, 1024, and 2048 entries demonstrate that the proposed address partitioning improves the performance of the PDLZW compared with the original proposal. These address space sizes are suitable for flash storage systems. Moreover, the PDLZW has relative high memory requirements which dominate the costs of a hardware implementation. This work proposes a recursive dictionary structure and a word partitioning technique that significantly reduce the memory size of the parallel dictionaries.

Ein Beitrag zum Beobachterentwurf und zur sensorlosen Folgeregelung translatorischer Magnetaktoren
(2020)

The growing error rates of triple-level cell (TLC) and quadruple-level cell (QLC) NAND flash memories have led to the application of error correction coding with soft-input decoding techniques in flash-based storage systems. Typically, flash memory is organized in pages where the individual bits per cell are assigned to different pages and different codewords of the error-correcting code. This page-wise encoding minimizes the read latency with hard-input decoding. To increase the decoding capability, soft-input decoding is used eventually due to the aging of the cells. This soft-decoding requires multiple read operations. Hence, the soft-read operations reduce the achievable throughput, and increase the read latency and power consumption. In this work, we investigate a different encoding and decoding approach that improves the error correction performance without increasing the number of reference voltages. We consider TLC and QLC flashes where all bits are jointly encoded using a Gray labeling. This cell-wise encoding improves the achievable channel capacity compared with independent page-wise encoding. Errors with cell-wise read operations typically result in a single erroneous bit per cell. We present a coding approach based on generalized concatenated codes that utilizes this property.

Error correction coding based on soft-input decoding can significantly improve the reliability of flash memories. Such soft-input decoding algorithms require reliability information about the state of the memory cell. This work proposes a channel model for soft-input decoding that considers the asymmetric error characteristic of multi-level cell (MLC) and triple-level cell (TLC) memories. Based on this model, an estimation method for the channel state information is devised which avoids additional pilot data for channel estimation. Furthermore, the proposed method supports page-wise read operations.

Experimental Validation of Ellipsoidal Techniques for State Estimation in Marine Applications
(2022)

A reliable quantification of the worst-case influence of model uncertainty and external disturbances is crucial for the localization of vessels in marine applications. This is especially true if uncertain GPS-based position measurements are used to update predicted vessel locations that are obtained from the evaluation of a ship’s state equation. To reflect real-life working conditions, these state equations need to account for uncertainty in the system model, such as imperfect actuation and external disturbances due to effects such as wind and currents. As an application scenario, the GPS-based localization of autonomous DDboat robots is considered in this paper. Using experimental data, the efficiency of an ellipsoidal approach, which exploits a bounded-error representation of disturbances and uncertainties, is demonstrated.

Extended Target Tracking With a Lidar Sensor Using Random Matrices and a Virtual Measurement Model
(2022)

Random matrices are widely used to estimate the extent of an elliptically contoured object. Usually, it is assumed that the measurements follow a normal distribution, with its standard deviation being proportional to the object’s extent. However, the random matrix approach can filter the center of gravity and the covariance matrix of measurements independently of the measurement model. This work considers the whole chain from data acquisition to the linear Kalman Filter with extension estimation as a reference plant. The input is the (unknown) ground truth (position and extent). The output is the filtered center of gravity and the filtered covariance matrix of the measurement distribution. A virtual measurement model emulates the behavior of the reference plant. The input of the virtual measurement model is adapted using the proposed algorithm until the output parameters of the virtual measurement model match the result of the reference plant. After the adaptation, the input to the virtual measurement model is considered an estimation for position and extent. The main contribution of this paper is the reference model concept and an adaptation algorithm to optimize the input of the virtual measurement model.

In this paper, approximating the shape of a sailing boat using elliptic cones is investigated. Measurements are assumed to be gathered from the target's surface recorded by 3D scanning devices such as multilayer LiDAR sensors. Therefore, different models for estimating the sailing boat's extent are presented and evaluated in simulated and real-world scenarios. In particular, the measurement source association problem is addressed in the models. Simulated investigations are conducted with a static and a moving elliptic cone. The real-world scenario was recorded with a Velodyne Alpha Prime (VLP-128) mounted on a ferry of Lake Constance. Final results of this paper constitute the extent estimation of a single sailing boat using LiDAR data applying various measurement models.

In this paper, a novel feature-based sampling strategy for nonlinear Model Predictive Path Integral (MPPI) control is presented. Using the MPPI approach, the optimal feedback control is calculated by solving a stochastic optimal control (OCP) problem online by evaluating the weighted inference of sampled stochastic trajectories. While the MPPI algorithm can be excellently parallelized, the closed-loop performance strongly depends on the information quality of the sampled trajectories. To draw samples, a proposal density is used. The solver’s and thus, the controller’s performance is of high quality if the sampled trajectories drawn from this proposal density are located in low-cost regions of state-space. In classical MPPI control, the explored state-space is strongly constrained by assumptions that refer to the control value’s covariance matrix, which are necessary for transforming the stochastic Hamilton–Jacobi–Bellman (HJB) equation into a linear second-order partial differential equation. To achieve excellent performance even with discontinuous cost functions, in this novel approach, knowledge-based features are introduced to constitute the proposal density and thus the low-cost region of state-space for exploration. This paper addresses the question of how the performance of the MPPI algorithm can be improved using a feature-based mixture of base densities. Furthermore, the developed algorithm is applied to an autonomous vessel that follows a track and concurrently avoids collisions using an emergency braking feature. Therefore, the presented feature-based MPPI algorithm is applied and analyzed in both simulation and full-scale experiments.

Feature-Based Proposal Density Optimization for Nonlinear Model Predictive Path Integral Control
(2022)

This paper presents a novel feature-based sampling strategy for nonlinear Model Predictive Path Integral (MPPI) control. In MPPI control, the optimal control is calculated by solving a stochastic optimal control problem online using the weighted inference of stochastic trajectories. While the algorithm can be excellently parallelized the closed- loop performance is dependent on the information quality of the drawn samples. Because these samples are drawn using a proposal density, its quality is crucial for the solver and thus the controller performance. In classical MPPI control, the explored state-space is strongly constrained by assumptions that refer to the control value variance, which are necessary for transforming the Hamilton-Jacobi-Bellman (HJB) equation into a linear second-order partial differential equation. To achieve excellent performance even with discontinuous cost-functions, in this novel approach, knowledge-based features are used to determine the proposal density and thus, the region of state- space for exploration. This paper addresses the question of how the performance of the MPPI algorithm can be improved using a feature-based mixture of base densities. Further, the developed algorithm is applied on an autonomous vessel that follows a track and concurrently avoids collisions using an emergency braking feature.

Flatness-based feed-forward control of solenoid actuators is considered. For precise motion planning and accurate steering of conventional solenoids, eddy currents cannot be neglected. The system of ordinary differential equations including eddy currents, that describes the nonlinear dynamics of such actuators, is not differentially flat. Thus, a distributed parameter approach based on a diffusion equation is considered, that enables the parametrization of the eddy current by the armature position and its time derivatives. In order to design the feedforward control, the distributed parameter model of the eddy current subsystem is combined with a typical nonlinear lumped parameter model for the electrical and mechanical subsystems of the solenoid. The control design and its application are illustrated by numerical and practical results for an industrial solenoid actuator.

Four-Dimensional Hurwitz Signal Constellations, Set Partitioning, Detection, and Multilevel Coding
(2021)

The Hurwitz lattice provides the densest four-dimensional packing. This fact has motivated research on four-dimensional Hurwitz signal constellations for optical and wireless communications. This work presents a new algebraic construction of finite sets of Hurwitz integers that is inherently accompanied by a respective modulo operation. These signal constellations are investigated for transmission over the additive white Gaussian noise (AWGN) channel. It is shown that these signal constellations have a better constellation figure of merit and hence a better asymptotic performance over an AWGN channel when compared with conventional signal constellations with algebraic structure, e.g., two-dimensional Gaussian-integer constellations or four-dimensional Lipschitz-integer constellations. We introduce two concepts for set partitioning of the Hurwitz integers. The first method is useful to reduce the computational complexity of the symbol detection. This suboptimum detection approach achieves near-maximum-likelihood performance. In the second case, the partitioning exploits the algebraic structure of the Hurwitz signal constellations. We partition the Hurwitz integers into additive subgroups in a manner that the minimum Euclidean distance of each subgroup is larger than in the original set. This enables multilevel code constructions for the new signal constellations.

In this article, we give the construction of new four-dimensional signal constellations in the Euclidean space, which represent a certain combination of binary frequency-shift keying (BFSK) and M-ary amplitude-phase-shift keying (MAPSK). Description of such signals and the formulas for calculating the minimum squared Euclidean distance are presented. We have developed an analytic building method for even and odd values of M. Hence, no computer search and no heuristic methods are required. The new optimized BFSK-MAPSK (M = 5,6,···,16) signal constructions are built for the values of modulation indexes h =0.1,0.15,···,0.5 and their parameters are given. The results of computer simulations are also provided. Based on the obtained results we can conclude, that BFSK-MAPSK systems outperform similar four-dimensional systems both in terms of minimum squared Euclidean distance and simulated symbol error rate.

Generalized Concatenated Codes over Gaussian and Eisenstein Integers for Code-Based Cryptography
(2021)

The code-based McEliece and Niederreiter cryptosystems are promising candidates for post-quantum public-key encryption. Recently, q-ary concatenated codes over Gaussian integers were proposed for the McEliece cryptosystem together with the one-Mannheim error channel, where the error values are limited to Mannheim weight one. Due to the limited error values, the codes over Gaussian integers achieve a higher error correction capability than maximum distance separable (MDS) codes with bounded minimum distance decoding. This higher error correction capability improves the work factor regarding decoding attacks based on information-set decoding. The codes also enable a low complexity decoding algorithm for decoding beyond the guaranteed error correction capability. In this work, we extend this coding scheme to codes over Eisenstein integers. These codes have advantages for the Niederreiter system. Additionally, we propose an improved code construction based on generalized concatenated codes. These codes extent the rate region where the work factor is beneficial compared to MDS codes. Moreover, generalized concatenated codes are more robust against structural attacks than ordinary concatenated codes.

Code-based cryptography is a promising candidate for post-quantum public-key encryption. The classic McEliece system uses binary Goppa codes, which are known for their good error correction capability. However, the key generation and decoding procedures of the classic McEliece system have a high computation complexity. Recently, q-ary concatenated codes over Gaussian integers were proposed for the McEliece cryptosystem together with the one-Mannheim error channel, where the error values are limited to Mannheim weight one. For this channel, concatenated codes over Gaussian integers achieve a higher error correction capability than maximum distance separable (MDS) codes with bounded minimum distance decoding. This improves the work factor regarding decoding attacks based on information-set decoding. This work proposes an improved construction for codes over Gaussian integers. These generalized concatenated codes extent the rate region where the work factor is beneficial compared to MDS codes. They allow for shorter public keys for the same level of security as the classic Goppa codes. Such codes are beneficial for lightweight code-based cryptosystems.

This paper proposes a novel transmission scheme for generalized multistream spatial modulation. This new approach uses one Mannheim error correcting codes over Gaussian or Eisenstein integers as multidimensional signal constellations. These codes enable a suboptimal decoding strategy with near maximum likelihood performance for transmission over the additive white Gaussian noise channel. In this contribution, this decoding algorithm is generalized to the detection for generalized multistream spatial modulation. The proposed method can outperform conventional generalized multistream spatial modulation with respect to decoding performance, detection complexity, and spectral efficiency.

With the high resolution of modern sensors such as multilayer LiDARs, estimating the 3D shape in an extended object tracking procedure is possible. In recent years, 3D shapes have been estimated in spherical coordinates using Gaussian processes, spherical double Fourier series or spherical harmonics. However, observations have shown that in many scenarios only a few measurements are obtained from top or bottom surfaces, leading to error-prone estimates in spherical coordinates. Therefore, in this paper we propose to estimate the shape in cylindrical coordinates instead, applying harmonic functions. Specifically, we derive an expansion for 3D shapes in cylindrical coordinates by solving a boundary value problem for the Laplace equation. This shape representation is then integrated in a plain greedy association model and compared to shape estimation procedures in spherical coordinates. Since the shape representation is only integrated in a basic estimator, the results are preliminary and a detailed discussion for future work is presented at the end of the paper.

Extracting suitable features from acquired data to accurately depict the current health state of a system is crucial in data driven condition monitoring and prediction. Usually, analogue sensor data is sampled at rates far exceeding the Nyquist-rate containing substantial amounts of redundancies and noise, imposing high computational loads due to the subsequent and necessary feature processing chain (generation, dimensionality reduction, rating and selection). To overcome these problems, Compressed Sensing can be used to sample directly to a compressed space, provided the signal at hand and the employed compression/measurement system meet certain criteria. Theory states, that during this compression step enough information is conserved, such that a reconstruction of the original signal is possible with high probability. The proposed approach however does not rely on reconstructed data for condition monitoring purposes, but uses directly the compressed signal representation as feature vector. It is hence assumed that enough information is conveyed by the compression for condition monitoring purposes. To fuse the compressed coefficients into one health index that can be used as input for remaining useful life prediction algorithms and is limited to a reasonable range between 1 and 0, a logistic regression approach is used. Run-to-failure data of three translational electromagnetic actuators is used to demonstrate the health index generation procedure. A comparison to the time domain ground truth signals obtained from Nyquist sampled coil current measurements shows reasonable agreement. I.e. underlying wear-out phenomena can be reproduced by the proposed approach enabling further investigation of the application of prognostic methods.

Digitale Signaturen zum Überprüfen der Integrität von Daten, beispielsweise von Software-Updates, gewinnen zunehmend an Bedeutung. Im Bereich der eingebetteten Systeme kommen derzeit wegen der geringen Komplexität noch überwiegend symmetri-sche Verschlüsselungsverfahren zur Berechnung eines Authentifizierungscodes zum Einsatz. Asym-metrische Kryptosysteme sind rechenaufwendiger, bieten aber mehr Sicherheit, weil der Schlüssel zur Authentifizierung nicht geheim gehalten werden muss. Asymmetrische Signaturverfahren werden typischerweise zweistufig berechnet. Der Schlüssel wird nicht direkt auf die Daten angewendet, sondern auf deren Hash-Wert, der mit Hilfe einer Hash-funktion zuvor berechnet wurde. Zum Einsatz dieser Verfahren in eingebetteten Systemen ist es erforder-lich, dass die Hashfunktion einen hinreichend gro-ßen Datendurchsatz ermöglicht. In diesem Beitrag wird eine effiziente Hardware-Implementierung der SHA-256 Hashfunktion vorgestellt.

In multi-extended object tracking, parameters (e.g., extent) and trajectory are often determined independently. In this paper, we propose a joint parameter and trajectory (JPT) state and its integration into the Bayesian framework. This allows processing measurements that contain information about parameters and states. Examples of such measurements are bounding boxes given from an image processing algorithm. It is shown that this approach can consider correlations between states and parameters. In this paper, we present the JPT Bernoulli filter. Since parameters and state elements are considered in the weighting of the measurement data assignment hypotheses, the performance is higher than with the conventional Bernoulli filter. The JPT approach can be also used for other Bayes filters.

Lernfabrik
(2016)

Die Einführung von cyberphysischen Systemen in der Fertigung wird die Arbeitsbedingungen und Prozesse genauso wie Geschäftsmodelle stark verändern. In der Praxis kann eine wachsende Diskrepanz zwischen Großunternehmen und KMU beobachtet werden. Genau diese Diskrepanz soll die im Folgenden präsentierte Lernfabrik überbrücken, die Unternehmen eine Plattform zum Probieren bietet, die Möglichkeit zur Ausbildung von Studenten und Mitarbeitern schafft und Beratungsangebote bereithält. Zur Umsetzung wird ein integriertes, offenes und standardisiertes Automatisierungskonzept vorgestellt, das einzelne Geräte, ganze Produktionslinien bis hin zu höheren Automatisierungssystemen umfasst und auch eine Community bereitstellt sowie zur Umsetzung neuer Geschäftsmodelle dient.

List decoding for concatenated codes based on the Plotkin construction with BCH component codes
(2021)

Reed-Muller codes are a popular code family based on the Plotkin construction. Recently, these codes have regained some interest due to their close relation to polar codes and their low-complexity decoding. We consider a similar code family, i.e., the Plotkin concatenation with binary BCH component codes. This construction is more flexible regarding the attainable code parameters. In this work, we consider a list-based decoding algorithm for the Plotkin concatenation with BCH component codes. The proposed list decoding leads to a significant coding gain with only a small increase in computational complexity. Simulation results demonstrate that the Plotkin concatenation with the proposed decoding achieves near maximum likelihood decoding performance. This coding scheme can outperform polar codes for moderate code lengths.