## 510 Mathematik

### Refine

#### Document Type

- Conference Proceeding (6)
- Article (3)
- Doctoral Thesis (2)
- Master's Thesis (1)

#### Keywords

- Bernstein Basis (1)
- Bernstein polynomial (2)
- Cauchon algorithm (4)
- Cauchon diagram (1)
- Cauchon matrix (1)
- Checkerboard partial ordering (1)
- Complex interval (1)
- Complex polynomial (1)
- Control Theory (1)
- Cyclic sign variation (1)

This thesis deals with the object tracking problem of multiple extended objects. For instance, this tracking problem occurs when a car with sensors drives on the road and detects multiple other cars in front of it. When the setup between the senor and the other cars is in a such way that multiple measurements are created by each single car, the cars are called extended objects. This can occur in real world scenarios, mainly with the use of high resolution sensors in near field applications. Such a near field scenario leads a single object to occupy several resolution cells of the sensor so that multiple measurements are generated per scan. The measurements are additionally superimposed by the sensor’s noise. Beside the object generated measurements, there occur false alarms, which are not caused by any object and sometimes in a sensor scan, single objects could be missed so that they not generate any measurements.
To handle these scenarios, object tracking filters are needed to process the sensor measurements in order to obtain a stable and accurate estimate of the objects in each sensor scan. In this thesis, the scope is to implement such a tracking filter that handles the extended objects, i.e. the filter estimates their positions and extents. In context of this, the topic of measurement partitioning occurs, which is a pre-processing of the measurement data. With the use of partitioning, the measurements that are likely generated by one object are put into one cluster, also called cell. Then, the obtained cells are processed by the tracking filter for the estimation process. The partitioning of measurement data is a crucial part for the performance of tracking filter because insufficient partitioning leads to bad tracking performance, i.e. inaccurate object estimates.
In this thesis, a Gaussian inverse Wishart Probability Hypothesis Density (GIW-PHD) filter was implemented to handle the multiple extended object tracking problem. Within this filter framework, the number of objects are modelled as Random Finite Sets (RFSs) and the objects’ extent as random matrices (RM). The partitioning methods that are used to cluster the measurement data are existing ones as well as a new approach that is based on likelihood sampling methods. The applied classical heuristic methods are Distance Partitioning (DP) and Sub-Partitioning (SP), whereas the proposed likelihood-based approach is called Stochastic Partitioning (StP). The latter was developed in this thesis based on the Stochastic Optimisation approach by Granström et al. An implementation, including the StP method and its integration into the filter framework, is provided within this thesis.
The implementations, using the different partitioning methods, were tested on simulated random multi-object scenarios and in a fixed parallel tracking scenario using Monte Carlo methods. Further, a runtime analysis was done to provide an insight into the computational effort using the different partitioning methods. It emphasized, that the StP method outperforms the classical partitioning methods in scenarios, where the objects move spatially close. The filter using StP performs more stable and with more accurate estimates. However, this advantage is associated with a higher computational effort compared to the classical heuristic partitioning methods.

In 1970, B.A. Asner, Jr., proved that for a real quasi-stable polynomial, i.e., a polynomial whose zeros lie in the closed left half-plane of the complex plane, its finite Hurwitz matrix is totally nonnegative, i.e., all its minors are nonnegative, and that the converse statement is not true. In this work, we explain this phenomenon in detail, and provide necessary and sufficient conditions for a real polynomial to have a totally nonnegative finite Hurwitz matrix.

Further applications of the Cauchon algorithm to rank determination and bidiagonal factorization
(2018)

For a class of matrices connected with Cauchon diagrams, Cauchon matrices, and the Cauchon algorithm, a method for determining the rank, and for checking a set of consecutive row (or column) vectors for linear independence is presented. Cauchon diagrams are also linked to the elementary bidiagonal factorization of a matrix and to certain types of rank conditions associated with submatrices called descending rank conditions.

This thesis considers bounding functions for multivariate polynomials and rational functions over boxes and simplices. It also considers the synthesis of polynomial Lyapunov functions for obtaining the stability of control systems. Bounding the range of functions is an important issue in many areas of mathematics and its applications like global optimization, computer aided geometric design, robust control etc.

A method is investigated by which tight bounds on the range of a multivariate rational function over a box can be computed. The approach relies on the expansion of the numerator and denominator polynomials in Bernstein polynomials. Convergence of the bounds to the range with respect to degree elevation of the Bernstein expansion, to the width of the box and to subdivision are proven and the inclusion isotonicity of the related enclosure function is shown.