### Refine

#### Document Type

- Conference Proceeding (18)
- Article (14)
- Patent (3)

#### Keywords

- Antenna arrays (1)
- BCH codes (1)
- Block codes (1)
- CONCATENATED codes (1)
- CONVOLUTION codes (1)
- Channel estimation (1)
- Concatenated codes (1)
- Data compression (2)
- Decoding (2)
- ERROR-correcting codes (1)

Codes over quotient rings of Lipschitz integers have recently attracted some attention. This work investigates the performance of Lipschitz integer constellations for transmission over the AWGN channel by means of the constellation figure of merit. A construction of sets of Lipschitz integers that leads to a better constellation figure of merit compared to ordinary Lipschitz integer constellations is presented. In particular, it is demonstrated that the concept of set partitioning can be applied to quotient rings of Lipschitz integers where the number of elements is not a prime number. It is shown that it is always possible to partition such quotient rings into additive subgroups in a manner that the minimum Euclidean distance of each subgroup is strictly larger than in the original set. The resulting signal constellations have a better performance for transmission over an additive white Gaussian noise channel compared to Gaussian integer constellations and to ordinary Lipschitz integer constellations. In addition, we present multilevel code constructions for the new signal constellations.

This paper proposes a pipelined decoder architecture for generalised concatenated (GC) codes. These codes are constructed from inner binary Bose-Chaudhuri-Hocquenghem (BCH) and outer Reed-Solomon codes. The decoding of the component codes is based on hard decision syndrome decoding algorithms. The concatenated code consists of several small BCH codes. This enables a hardware architecture where the decoding of the component codes is pipelined. A hardware implementation of a GC decoder is presented and the cell area, cycle counts as well as the timing constraints are investigated. The results are compared to a decoder for long BCH codes with similar error correction performance. In comparison, the pipelined GC decoder achieves a higher throughput and has lower area consumption.

This work investigates soft input decoding for generalized concatenated (GC) codes. The GC codes are constructed from inner nested binary Bose-Chaudhuri-Hocquenghem (BCH)codes and outer Reed-Solomon (RS) codes. In order to enable soft input decoding for the inner BCH block codes, a sequential stack decoding algorithm is used. Ordinary stack decoding of binary block codes requires the complete trellis of the code.
In this work a representation of the block codes based on the trellises of supercodes is proposed in order to reduce the memory requirements for the representation of the BCH codes. Results for the decoding performance of the overall GC code are presented.
Furthermore, an efficient hardware implementation of the GC decoder is proposed.

Codes over quotient rings of Lipschitz integers have recently attracted some attention. This work investigates the performance of Lipschitz integer constellations for transmission over the AWGN channel by means of the constellation figure of merit. A construction of sets of Lipschitz integers is presented that leads to a better constellation figure of merit compared to ordinary Lipschitz integer constellations. In particular, it is demonstrated that the concept of set partitioning can be applied to quotient rings of Lipschitz integers where the number of elements is not a prime number. It is shown that it is always possible to partition such quotient rings into additive subgroups in a manner that the minimum Euclidean distance of each subgroup is strictly larger than in the original set. The resulting signal constellations have a better performance for transmission over an additive white Gaussian noise channel compared to Gaussian integer constellations and to ordinary Lipschitz integer constellations.

This contribution presents a data compression scheme for applications in non-volatile flash memories. The objective of the data compression algorithm is to reduce the amount of user data such that the redundancy of the error correction coding can be increased in order to improve the reliability of the data storage system. The data compression is performed on block level considering data blocks of 1 kilobyte. We present an encoder architecture that has low memory requirements and provides a fast data encoding.

This work proposes an efficient hardware Implementation of sequential stack decoding of binary block codes. The decoder can be applied for soft input decoding for generalized concatenated (GC) codes. The GC codes are constructed from inner nested binary Bose-Chaudhuri-Hocquenghem (BCH) codes and outer Reed-Solomon (RS) codes. In order to enable soft input decoding for the inner BCH block codes, a sequential stack decoding algorithm is used.

Flash-Speicher wurden ursprünglich als Speichermedium für Digitalkameras entwickelt, finden inzwischen aber in vielen Bereichen Anwendung.
Die in Konstanz ansässige Firma Hyperstone GmbH ist ein führender Anbieter von Flashcontrollern für Anwendungen mit erhöhten Anforderungen an Zuverlässigkeit und Datenintegrität. Bereits seit April 2011 kooperiert die Firma Hyperstone mit der HTWG Konstanz bei der Entwicklung von Fehlerkorrekturverfahren für einen zuverlässigen Einsatz von Flash-Speichern. Aufgrund der rasanten Entwicklung bei Flashspeicherbausteinen ist auch eine stetige Weiterentwicklung der Korrekturverfahren notwendig. Im Rahmen dieser Kooperation wurde inzwischen zwei Flashcontroller mit sehr leistungsfähiger Fehlerkorrektur entwickelt. Der folgende Artikel gibt Einblick in den Einsatz von Flash-Speichern und erläutert die Notwendigkeit für eine leistungsfähige Fehlerkorrektur.

This work investigates data compression algorithms for applications in non-volatile flash memories. The main goal of the data compression is to minimize the amount of user data such that the redundancy of the error correction coding can be increased and the reliability of the error correction can be improved. A compression algorithm is proposed that combines a modified move-to-front algorithm with Huffman coding. The proposed data compression algorithm has low complexity, but provides a compression gain comparable to the Lempel-Ziv-Welch algorithm.

This paper studies suitable models for the identification of nonlinear acoustic systems. A cascaded structure of nonlinear filters is proposed that contains several parallel branches, consisting of polynomial functions followed by a linear filter for each order of nonlinearity. The second order of nonlinearity is additionally modelled with a parallel branch, containing a Volterra filter. These are followed by a long linear FIR filter that is able to model the room acoustics. The model is applied to the identification of a tube power amplifier feeding a guitar loudspeaker cabinet in an acoustic room. The adaptive identification is performed by the normalized least mean square (NLMS) algorithm. Compared with a generalized polynomial Hammerstein (GPH) model, the accuracy in modelling the dedicated real world system can be improved to a greater extend than increasing the order of nonlinearity in the GPH model.