Refine
Document Type
- Conference Proceeding (44)
- Article (29)
- Patent (3)
Keywords
- Antenna arrays (1)
- BCH codes (1)
- Binary codes (1)
- Block codes (2)
- CONCATENATED codes (1)
- CONVOLUTION codes (1)
- Capacity (1)
- Channel capacity (1)
- Channel coding (1)
- Channel estimation (2)
Institute
Large persistent memory is crucial for many applications in embedded systems and automotive computing like AI databases, ADAS, and cutting-edge infotainment systems. Such applications require reliable NAND flash memories made for harsh automotive conditions. However, due to high memory densities and production tolerances, the error probability of NAND flash memories has risen. As the number of program/erase cycles and the data retention times increase, non-volatile NAND flash memories' performance and dependability suffer. The read reference voltages of the flash cells vary due to these aging processes. In this work, we consider the issue of reference voltage adaption. The considered estimation procedure uses shallow neural networks to estimate the read reference voltages for different life-cycle conditions with the help of histogram measurements. We demonstrate that the training data for the neural networks can be enhanced by using shifted histograms, i.e., a training of the neural networks is possible based on a few measurements of some extreme points used as training data. The trained neural networks generalize well for other life-cycle conditions.
In this letter, we present an approach to building a new generalized multistream spatial modulation system (GMSM), where the information is conveyed by the two active antennas with signal indices and using all possible active antenna combinations. The signal constellations associated with these antennas may have different sizes. In addition, four-dimensional hybrid frequency-phase modulated signals are utilized in GMSM. Examples of GMSM systems are given and computer simulation results are presented for transmission over Rayleigh and deep Nakagami- m flat-fading channels when maximum-likelihood detection is used. The presented results indicate a significant improvement of characteristics compared to the best-known similar systems.
List decoding for concatenated codes based on the Plotkin construction with BCH component codes
(2021)
Reed-Muller codes are a popular code family based on the Plotkin construction. Recently, these codes have regained some interest due to their close relation to polar codes and their low-complexity decoding. We consider a similar code family, i.e., the Plotkin concatenation with binary BCH component codes. This construction is more flexible regarding the attainable code parameters. In this work, we consider a list-based decoding algorithm for the Plotkin concatenation with BCH component codes. The proposed list decoding leads to a significant coding gain with only a small increase in computational complexity. Simulation results demonstrate that the Plotkin concatenation with the proposed decoding achieves near maximum likelihood decoding performance. This coding scheme can outperform polar codes for moderate code lengths.
This work studies a wind noise reduction approach for communication applications in a car environment. An endfire array consisting of two microphones is considered as a substitute for an ordinary cardioid microphone capsule of the same size. Using the decomposition of the multichannel Wiener filter (MWF), a suitable beamformer and a single-channel post filter are derived. Due to the known array geometry and the location of the speech source, assumptions about the signal properties can be made to simplify the MWF beamformer and to estimate the speech and noise power spectral densities required for the post filter. Even for closely spaced microphones, the different signal properties at the microphones can be exploited to achieve a significant reduction of wind noise. The proposed beamformer approach results in an improved speech signal regarding the signal-to-noise-ratio and keeps the linear speech distortion low. The derived post filter shows equal performance compared to known approaches but reduces the effort for noise estimation.
Automotive computing applications like AI databases, ADAS, and advanced infotainment systems have a huge need for persistent memory. This trend requires NAND flash memories designed for extreme automotive environments. However, the error probability of NAND flash memories has increased in recent years due to higher memory density and production tolerances. Hence, strong error correction coding is needed to meet automotive storage requirements. Many errors can be corrected by soft decoding algorithms. However, soft decoding is very resource-intensive and should be avoided when possible. NAND flash memories are organized in pages, and the error correction codes are usually encoded page-wise to reduce the latency of random reads. This page-wise encoding does not reach the maximum achievable capacity. Reading soft information increases the channel capacity but at the cost of higher latency and power consumption. In this work, we consider cell-wise encoding, which also increases the capacity compared to page-wise encoding. We analyze the cell-wise processing of data in triple-level cell (TLC) NAND flash and show the performance gain when using Low-Density Parity-Check (LDPC) codes. In addition, we investigate a coding approach with page-wise encoding and cell-wise reading.
Generalised concatenated (GC) codes are well suited for error correction in flash memories for high-reliability data storage. The GC codes are constructed from inner extended binary Bose–Chaudhuri–Hocquenghem (BCH) codes and outer Reed–Solomon codes. The extended BCH codes enable high-rate GC codes and low-complexity soft input decoding. This work proposes a decoder architecture for high-rate GC codes. For such codes, outer error and erasure decoding are mandatory. A pipelined decoder architecture is proposed that achieves a high data throughput with hard input decoding. In addition, a low-complexity soft input decoder is proposed. This soft decoding approach combines a bit-flipping strategy with algebraic decoding. The decoder components for the hard input decoding can be utilised which reduces the overhead for the soft input decoding. Nevertheless, the soft input decoding achieves a significant coding gain compared with hard input decoding.
In this work, we investigate a hybrid decoding approach that combines algebraic hard-input decoding of binary block codes with soft-input decoding. In particular, an acceptance criterion is proposed which determines the reliability of a candidate codeword. For many received codewords the stopping criterion indicates that the hard-decoding result is sufficiently reliable, and the costly soft-input decoding can be omitted. The proposed acceptance criterion significantly reduces the decoding complexity. For simulations we combine the algebraic hard-input decoding with ordered statistics decoding, which enables near maximum likelihood soft-input decoding for codes of small to medium block lengths.
This work proposes a construction for low-density parity-check (LDPC) codes over finite Gaussian integer fields. Furthermore, a new channel model for codes over Gaussian integers is introduced and its channel capacity is derived. This channel can be considered as a first order approximation of the additive white Gaussian noise channel with hard decision detection where only errors to nearest neighbors in the signal constellation are considered. For this channel, the proposed LDPC codes can be decoded with a simple non-probabilistic iterative decoding algorithm similar to Gallager's decoding algorithm A.
This paper proposes a pipelined decoder architecture for generalised concatenated (GC) codes. These codes are constructed from inner binary Bose-Chaudhuri-Hocquenghem (BCH) and outer Reed-Solomon codes. The decoding of the component codes is based on hard decision syndrome decoding algorithms. The concatenated code consists of several small BCH codes. This enables a hardware architecture where the decoding of the component codes is pipelined. A hardware implementation of a GC decoder is presented and the cell area, cycle counts as well as the timing constraints are investigated. The results are compared to a decoder for long BCH codes with similar error correction performance. In comparison, the pipelined GC decoder achieves a higher throughput and has lower area consumption.
It is well known that signal constellations which are based on a hexagonal grid, so-called Eisenstein constellations, exhibit a performance gain over conventional QAM ones. This benefit is realized by a packing and shaping gain of the Eisenstein (hexagonal) integers in comparison to the Gaussian (complex) integers. Such constellations are especially relevant in transmission schemes that utilize lattice structures, e.g., in MIMO communications. However, for coded modulation, the straightforward approach is to combine Eisenstein constellations with ternary channel codes. In this paper, a multilevel-coding approach is proposed where encoding and multistage decoding can directly be performed with state-of-the-art binary channel codes. An associated mapping and a binary set partitioning are derived. The performance of the proposed approach is contrasted to classical multilevel coding over QAM constellations. To this end, both the single-user AWGN scenario and the (multiuser) MIMO broadcast scenario using lattice-reduction-aided preequalization are considered. Results obtained from numerical simulations with LDPC codes complement the theoretical aspects.