Refine
Document Type
- Conference Proceeding (462) (remove)
Language
- English (328)
- German (133)
- Multiple languages (1)
Keywords
- 3D ship detection (1)
- AAL (1)
- Abrasive grain material (1)
- Academic german (1)
- Accelerometers (1)
- Accessible Tourism (1)
- Actions (1)
- Activity monitoring (1)
- Actuators (2)
- Adaptive (1)
Institute
- Fakultät Bauingenieurwesen (6)
- Fakultät Elektrotechnik und Informationstechnik (7)
- Fakultät Informatik (40)
- Fakultät Maschinenbau (7)
- Fakultät Wirtschafts-, Kultur- und Rechtswissenschaften (3)
- Institut für Angewandte Forschung - IAF (7)
- Institut für Optische Systeme - IOS (13)
- Institut für Strategische Innovation und Technologiemanagement - IST (14)
- Institut für Systemdynamik - ISD (29)
- Institut für Werkstoffsystemtechnik Konstanz - WIK (4)
The magneto-mechanical behavior of magnetic shape memory (MSM) materials has been investigated by means of different simulation and modeling approaches by several research groups. The target of this paper is to simulate actuators driven by MSM alloys and to understand the MSM element behavior during actuation, which shall lead to an increased performance of the actuator. It is shown that internal and external stresses should be taken into consideration using numerical computation tools for magnetic fields in an efficient way.
The binary asymmetric channel (BAC) is a model for the error characterization of multi-level cell (MLC) flash memories. This contribution presents a joint channel and source coding approach improving the reliability of MLC flash memories. The objective of the data compression algorithm is to reduce the amount of user data such that the redundancy of the error correction coding can be increased in order to improve the reliability of the data storage system. Moreover, data compression can be utilized to exploit the asymmetry of the channel to reduce the error probability. With MLC flash memories data compression has to be performed on block level considering short data blocks. We present a coding scheme suitable for blocks of 1 kilobyte of data.
One major realm of Condition Based Maintenance is finding features that reflect the current health state of the asset or component under observation. Most of the existing approaches are accompanied with high computational costs during the different feature processing phases making them infeasible in a real-world scenario. In this paper a feature generation method is evaluated compensating for two problems: (1) storing and handling large amounts of data and (2) computational complexity. Both aforementioned problems are existent e.g. when electromagnetic solenoids are artificially aged and health indicators have to be extracted or when multiple identical solenoids have to be monitored. To overcome those problems, Compressed Sensing (CS), a new research field that keeps constantly emerging into new applications, is employed. CS is a data compression technique allowing original signal reconstruction with far fewer samples than Shannon-Nyquist dictates, when some criteria are met. By applying this method to measured solenoid coil current, raw data vectors can be reduced to a way smaller set of samples that yet contain enough information for proper reconstruction. The obtained CS vector is also assumed to contain enough relevant information about solenoid degradation and faults, allowing CS samples to be used as input to fault detection or remaining useful life estimation routines. The paper gives some results demonstrating compression and reconstruction of coil current measurements and outlines the application of CS samples as condition monitoring data by determining deterioration and fault related features. Nevertheless, some unresolved issues regarding information loss during the compression stage, the design of the compression method itself and its influence on diagnostic/prognostic methods exist.
This paper describes an early lumping approach for generating a mathematical model of the heating process of a moving dual-layer substrate. The heat is supplied by convection and nonlinearly distributed over the whole considered spatial extend of the substrate. Using CFD simulations as a reference, two different modelling approaches have been investigated in order to achieve the most suitable model type. It is shown that due to the possibility of using the transition matrix for time discretization, an equivalent circuit model achieves superior results when compared to the Crank-Nicolson method. In order to maintain a constant sampling time for the in-visioned-control strategies, the effect of variable speed is transformed into a system description, where the state vector has constant length but a variable number of non-zero entries. The handling of the variable transport speed during the heating process is considered as the main contribution of this work. The result is a model, suitable for being used in future control strategies.
Online-based business models, such as shopping platforms, have added new possibilities for consumers over the last two decades. Aside from basic differences to other distribution channels, customer reviews on such platforms have become a powerful tool, which bestows an additional source for gaining transparency to consumers. Related research has, for the most part, been labelled under the term electronic word-of-mouth (eWOM). An approach, providing a theoretical basis for this phenomenon, will be provided here. The approach is mainly based on work in the field of consumer culture theory (CCT) and on the concept of co-creation. The work of several authors in these streams of research is used to construct a culturally informed resource-based theory, as advocated by Arnould & Thompson and Algesheimer & Gurâu.
This contribution presents a data compression scheme for applications in non-volatile flash memories. The objective of the data compression algorithm is to reduce the amount of user data such that the redundancy of the error correction coding can be increased in order to improve the reliability of the data storage system. The data compression is performed on block level considering data blocks of 1 kilobyte. We present an encoder architecture that has low memory requirements and provides a fast data encoding.
This work proposes a decoder implementation for high-rate generalized concatenated (GC) codes. The proposed codes are well suited for error correction in flash memories for high reliability data storage. The GC codes are constructed from inner extended binary Bose-Chaudhuri-Hocquenghem (BCH) codes and outer Reed-Solomon (RS) codes. The extended BCH codes enable high-rate GC codes. Moreover, the decoder can take advantage of soft information. For the first three levels of inner codes we propose an optional Chase soft decoder. In this work, the code construction is explained and a decoder architecture is presented. Furthermore, area and throughput results are discussed.
This paper presents the implementation of deep learning methods for sleep stage detection by using three signals that can be measured in a non-invasive way: heartbeat signal, respiratory signal, and movement signal. Since signals are measurements taken during the time, the problem is seen as time-series data classification. Deep learning methods are chosen to solve the problem are convolutional neural network and long-short term memory network. Input data is structured as a time-series sequence of mentioned signals that represent 30 seconds epoch, which is a standard interval for sleep analysis. The records used belong to the overall 23 subjects, which are divided into two subsets. Records from 18 subjects were used for training the data and from 5 subjects for testing the data. For detecting four sleep stages: REM (Rapid Eye Movement), Wake, Light sleep (Stage 1 and Stage 2), and Deep sleep (Stage 3 and Stage 4), the accuracy of the model is 55%, and F1 score is 44%. For five stages: REM, Stage 1, Stage 2, Deep sleep (Stage 3 and 4), and Wake, the model gives an accuracy of 40% and F1 score of 37%.
Modeling a suitable birth density is a challenge when using Bernoulli filters such as the Labeled Multi-Bernoulli (LMB) filter. The birth density of newborn targets is unknown in most applications, but must be given as a prior to the filter. Usually the birth density stays unchanged or is designed based on the measurements from previous time steps.
In this paper, we assume that the true initial state of new objects is normally distributed. The expected value and covariance of the underlying density are unknown parameters. Using the estimated multi-object state of the LMB and the Rauch-Tung-Striebel (RTS) recursion, these parameters are recursively estimated and adapted after a target is detected.
The main contribution of this paper is an algorithm to estimate the parameters of the birth density and its integration into the LMB framework. Monte Carlo simulations are used to evaluate the detection driven adaptive birth density in two scenarios. The approach can also be applied to filters that are able to estimate trajectories.
Error correction coding (ECC) for optical communication and persistent storage systems require high rate codes that enable high data throughput and low residual errors. Recently, different concatenated coding schemes were proposed that are based on binary Bose-Chaudhuri-Hocquenghem (BCH) codes that have low error correcting capabilities. Commonly, hardware implementations for BCH decoding are based on the Berlekamp-Massey algorithm (BMA). However, for single, double, and triple error correcting BCH codes, Peterson's algorithm can be more efficient than the BMA. The known hardware architectures of Peterson's algorithm require Galois field inversion. This inversion dominates the hardware complexity and limits the decoding speed. This work proposes an inversion-less version of Peterson's algorithm. Moreover, a decoding architecture is presented that is faster than decoders that employ inversion or the fully parallel BMA at a comparable circuit size.
Observer-based self sensing for digital (on–off) single-coil solenoid valves is investigated. Self sensing refers to the case where merely the driving signals used to energize the actuator (voltage and coil current) are available to obtain estimates of both the position and velocity. A novel observer approach for estimating the position and velocity from the driving signals is presented, where the dynamics of the mechanical subsystem can be neglected in the model. Both the effect of eddy currents and saturation effects are taken into account in the observer model. Practical experimental results are shown and the new method is compared with a full-order sliding mode observer.
Cardiovascular diseases are directly or indirectly responsible for up to 38.5% of all deaths in Germany and thus represent the most frequent cause of death. At present, heart diseases are mainly discovered by chance during routine visits to the doctor or when acute symptoms occur. However, there is no practical method to proactively detect diseases or abnormalities of the heart in the daily environment and to take preventive measures for the person concerned. Long-term ECG devices, as currently used by physicians, are simply too expensive, impractical, and not widely available for everyday use. This work aims to develop an ECG device suitable for everyday use that can be worn directly on the body. For this purpose, an already existing hardware platform will be analyzed, and the corresponding potential for improvement will be identified. A precise picture of the existing data quality is obtained by metrological examination, and corresponding requirements are defined. Based on these identified optimization potentials, a new ECG device is developed. The revised ECG device is characterized by a high integration density and combines all components directly on one board except the battery and the ECG electrodes. The compact design allows the device to be attached directly to the chest. An integrated microcontroller allows digital signal processing without the need for an additional computer. Central features of the evaluation are a peak detection for detecting R-peaks and a calculation of the current heart rate based on the RR interval. To ensure the validity of the detected R-peaks, a model of the anatomical conditions is used. Thus, unrealistic RR-intervals can be excluded. The wireless interface allows continuous transmission of the calculated heart rate. Following the development of hardware and software, the results are verified, and appropriate conclusions about the data quality are drawn. As a result, a very compact and wearable ECG device with different wireless technologies, data storage, and evaluation of RR intervals was developed. Some tests yelled runtimes up to 24 hours with wireless Lan activated and streaming.
We propose and apply a requirements engineering approach that focuses on security and privacy properties and takes into account various stakeholder interests. The proposed methodology facilitates the integration of security and privacy by design into the requirements engineering process. Thus, specific, detailed security and privacy requirements can be implemented from the very beginning of a software project. The method is applied to an exemplary application scenario in the logistics industry. The approach includes the application of threat and risk rating methodologies, a technique to derive technical requirements from legal texts, as well as a matching process to avoid duplication and accumulate all essential requirements.
A semilinear distributed parameter approach for solenoid valve control including saturation effects
(2015)
In this paper a semilinear parabolic PDE for the control of solenoid valves is presented. The distributed parameter model of the cylinder becomes nonlinear by the inclusion of saturation effects due to the material's B/H-curve. A flatness based solution of the semilinear PDE is shown as well as a convergence proof of its series solution. By numerical simulation results the adaptability of the approach is demonstrated, and differences between the linear and the nonlinear case are discussed. The major contribution of this paper is the inclusion of saturation effects into the magnetic field governing linear diffusion equation, and the development of a flatness based solution for the resulting semilinear PDE as an extension of previous works [1] and [2].
Sleep quality and in general, behavior in bed can be detected using a sleep state analysis. These results can help a subject to regulate sleep and recognize different sleeping disorders. In this work, a sensor grid for pressure and movement detection supporting sleep phase analysis is proposed. In comparison to the leading standard measuring system, which is Polysomnography (PSG), the system proposed in this project is a non-invasive sleep monitoring device. For continuous analysis or home use, the PSG or wearable Actigraphy devices tends to be uncomfortable. Besides this fact, they are also very expensive. The system represented in this work classifies respiration and body movement with only one type of sensor and also in a non-invasive way. The sensor used is a pressure sensor. This sensor is low cost and can be used for commercial proposes. The system was tested by carrying out an experiment that recorded the sleep process of a subject. These recordings showed the potential for classification of breathing rate and body movements. Although previous researches show the use of pressure sensors in recognizing posture and breathing, they have been mostly used by positioning the sensors between the mattress and bedsheet. This project however, shows an innovative way to position the sensors under the mattress.
Creating cages that enclose a 3D-model of some sort is part of many preprocessing pipelines in computational geometry. Creating a cage of preferably lower resolution than the original model is of special interest when performing an operation on the original model might be to costly. The desired operation can be applied to the cage first and then transferred to the enclosed model. With this paper the authors present a short survey of recent and well known methods for cage computation.
The authors would like to give the reader an insight in common methods and their differences.
Generalized concatenated (GC) codes with soft-input decoding were recently proposed for error correction in flash memories. This work proposes a soft-input decoder for GC codes that is based on a low-complexity bit-flipping procedure. This bit-flipping decoder uses a fixed number of test patterns and an algebraic decoder for soft-input decoding. An acceptance criterion for the final candidate codeword is proposed. Combined with error and erasure decoding of the outer Reed-Solomon codes, this bit-flipping decoder can improve the decoding performance and reduce the decoding complexity compared to the previously proposed sequential decoding. The bit-flipping decoder achieves a decoding performance similar to a maximum likelihood decoder for the inner codes.
We present a 3d-laser-scan simulation in virtual
reality for creating synthetic scans of CAD models. Consisting of
the virtual reality head-mounted display Oculus Rift and the
motion controller Razer Hydra our system can be used like
common hand-held 3d laser scanners. It supports scanning of
triangular meshes as well as b-spline tensor product surfaces
based on high performance ray-casting algorithms. While point
clouds of known scanning simulations are missing the man-made
structure, our approach overcomes this problem by imitating
real scanning scenarios. Calculation speed, interactivity and the
resulting realistic point clouds are the benefits of this system.
The investigation of stress requires to distinguish between stress caused by physical activity and stress that is caused by psychosocial factors. The behaviour of the heart in response to stress and physical activity is very similar in case the set of monitored parameters is reduced to one. Currently, the differentiation remains difficult and methods which only use the heart rate are not able to differentiate between stress and physical activity, without using additional sensor data input. The approach focusses on methods which generate signals providing characteristics that are useful for detecting stress, physical activity, no activity and relaxation.
When designing drying processes for sensitive biological foodstuffs like fruit or vegetables, energy and time efficiency as well as product quality are gaining more and more importance. These all are greatly influenced by the different drying parameters (e.g. air temperature, air velocity and dew point temperature) in the process. In sterilization of food products the cooking value is widely used as a cross-link between these parameters. In a similar way, the so-called cumulated thermal load (CTL) was introduced for drying processes. This was possible because most quality changes mainly depend on drying air temperature and drying time. In a first approach, the CTL was therefore defined as the time integral of the surface temperature of agricultural products. When conducting experiments with mangoes and pineapples, however, it was found that the CTL as it was used had to be adjusted to a more practical form. So the definition of the CTL was improved and the behaviour of the adjusted CTL (CTLad) was investigated in the drying of pineapples and mangoes. On the basis of these experiments and the work that had been done on the cooking value, it was found, that more optimization on the CTLad had to be done to be able to compare a great variety of different products as well as different quality parameters.
An approach for an adaptive position-dependent friction estimation for linear electromagnetic actuators with altered characteristics is proposed in this paper. The objective is to obtain a friction model that can be used to describe different stages of aging of magnetic actuators. It is compared to a classical Stribeck friction model by means of model fit, sensitivity, and parameter correlation. The identifiability of the parameters in the friction model is of special interest since the model is supposed to be used for diagnostic and prognostic purposes. A method based on the Fisher information matrix is employed to analyze the quality of the model structure and the parameter estimates.
The Lempel-Ziv-Welch (LZW) algorithm is an important dictionary-based data compression approach that is used in many communication and storage systems. The parallel dictionary LZW (PDLZW) algorithm speeds up the LZW encoding by using multiple dictionaries. The PDLZW algorithm applies different dictionaries to store strings of different lengths, where each dictionary stores only strings of the same length. This simplifies the parallel search in the dictionaries for hardware implementations. The compression gain of the PDLZW depends on the partitioning of the address space, i.e. on the sizes of the parallel dictionaries. However, there is no universal partitioning that is optimal for all data sources. This work proposes an address space partitioning technique that optimizes the compression rate of the PDLZW using a Markov model for the data. Numerical results for address spaces with 512, 1024, and 2048 entries demonstrate that the proposed partitioning improves the performance of the PDLZW compared with the original proposal.
Successful project management (PM), as one of the most important key competences in the western-oriented working world, is mainly influenced by experience and social skills. As a direct impact on PM training, the degree of practice and reality is crucial for the application of lessons learned in a challenging everyday work life. This work presents a recursive approach that adapts well-known principles of PM itself for PM training. Over three years, we have developed a concept and an integrated software system that support our PM university courses. Stepwise, it transfers theoretical PM knowledge into realistic project phases by automatically adjusting to the individual learning progress. Our study reveals predictors such as degrees of collaboration or weekend work as vital aspects in the PM training progress. The chosen granularity of project phases with variances in different dimensions makes our model a canonical incarnation of seamless learning.
The business plan is one of the most frequently available artifacts to innovation intermediaries of technology-based ventures' presentations in their early stages [1]–[4]. Agreement on the evaluations of venturing projects based on the business plans highly depends on the individual perspective of the readers [5], [6]. One reason is that little empirical proof exists for descriptions in business plans that suggest survival of early-stage technology ventures [7]–[9]. We identified descriptions of transaction relations [10]–[13] as an anchor of the snapshot model business plan to business reality [13]. In the early-stage, surviving ventures are building transaction relations to human resources, financial resources, and suppliers on the input side, and customers on the output side of the business towards a stronger ego-centric value network [10]–[13]. We conceptualized a multidimensional measurement instrument that evaluates the maturity of this ego-centric value networks based on the transaction relations of different strength levels that are described in business plans of early-stage technology ventures [13]. In this paper, the research design and the instrument are purified to achieve high agreement in the evaluation of business plans [14]–[16]. As a result, we present an overall research design that can reach acceptable quality for quantitative research. The paper so contributes to the literature on business analysis in the early-stage of technology-based ventures and the research technique of content analysis.
In this work, we investigate a hybrid decoding approach that combines algebraic hard-input decoding of binary block codes with soft-input decoding. In particular, an acceptance criterion is proposed which determines the reliability of a candidate codeword. For many received codewords the stopping criterion indicates that the hard-decoding result is sufficiently reliable, and the costly soft-input decoding can be omitted. The proposed acceptance criterion significantly reduces the decoding complexity. For simulations we combine the algebraic hard-input decoding with ordered statistics decoding, which enables near maximum likelihood soft-input decoding for codes of small to medium block lengths.
This work proposes an efficient hardware Implementation of sequential stack decoding of binary block codes. The decoder can be applied for soft input decoding for generalized concatenated (GC) codes. The GC codes are constructed from inner nested binary Bose-Chaudhuri-Hocquenghem (BCH) codes and outer Reed-Solomon (RS) codes. In order to enable soft input decoding for the inner BCH block codes, a sequential stack decoding algorithm is used.
Many resource-constrained systems still rely on symmetric cryptography for verification and authentication. Asymmetric cryptographic systems provide higher security levels, but are very computational intensive. Hence, embedded systems can benefit from hardware assistance, i.e., coprocessors optimized for the required public key operations. In this work, we propose an elliptic curve cryptographic coprocessors design for resource-constrained systems. Many such coprocessor designs consider only special (Solinas) prime fields, which enable a low-complexity modulo arithmetic. Other implementations support arbitrary prime curves using the Montgomery reduction. These implementations typically require more time for the point multiplication. We present a coprocessor design that has low area requirements and enables a trade-off between performance and flexibility. The point multiplication can be performed either using a fast arithmetic based on Solinas primes or using a slower, but flexible Montgomery modular arithmetic.
Business models (BM) are the logic of a firm on how to create, deliver and capture value. Business model innovation (BMI) is essential to organisations for keeping competitive advantage. However, the existence of barriers to BMI can impact the success of a corporate strategic alignment. Previous research has examined the internal barriers to business model innovation, however there is a lack of research on the potential external barriers that could potentially inhibit business model innovation. Drawn from an in-depth case study in a German medium size engineering company in the equestrian sports industry, we explore both internal and external barriers to business model innovation. BMI is defined as any change in one or more of the nine building blocks of the Business Model Canvas; customer segment, value propositions, channels, customer relation, revenue streams, key resources, key activities, key partners, cost structure [1]. Our results show that barriers to business model innovation can be overcome by the deployment of organisational learning mechanisms and the development of an open network capability.
The paper investigates an innovative actuator combination based on the magnetic shape memory technology. The actuator is composed of an electromagnet, which is activated to produce motion, and a magnetic shape memory element, which is used passively to yield multistability, i.e. the possibility of holding a position without input power. Based on the experimental open-loop frequency characterization of the actuator, a position controller is developed and tested in several experiments.
This work is a study about a comparison of survey tools and it should help developers in selecting a suited tool for application in an AAL environment. The first step was to identify the basic required functionality of the survey tools used for AAL technologies and to compare these tools by their functionality and assignments. The comparative study was derived from the data obtained, previous literature studies and further technical data. A list of requirements was stated and ordered in terms of relevance to the target application domain. With the help of an integrated assessment method, the calculation of a generalized estimate value was performed and the result is explained. Finally, the planned application of this tool in a running project is explained.
Present demographic change and a growing population of elderly people leads to new medical needs. Meeting these with state of the art technology is as a consequence a rapidly growing market. So this work is aimed at taking modern concepts of mobile and sensor technology and putting them in a medical context. By measuring a user’s vital signs on sensors which are processed on a Android smartphone, the target system is able to determine the current health state of the user and to visualize gathered information. The system also includes a weather forecasting functionality, which alerts the user on possibly dangerous future meteorological events. All information are collected centrally and distributed to users based on their location. Further, the system can correlate the client-side measurement of vital signs with a server-side weather history. This enables personalized forecasting for each user individually. Finally, a portable and affordable application was developed that continuously monitors the health status by many vital sensors, all united on a common smartphone.
The first part of this work shows the development and application of a new material system using high strength duplex stainless steel wires as net material with environmentally compatible antifouling properties for off-shore fish farm cages. Current net materials from textiles (polyamide) shall be partially replaced by high strength duplex stainless steel in order to have a more environmentally compatible system which meets the more severe mechanical loads (waves, storms, predatores (sharks, seals)). With a new antifouling strategy current issues like reduced ecological damage (e.g. due to copper disposal), lower maintenance costs (e.g. cleaning) and reduced durability shall be resolved.
High strength steel wires are also widely used in geological protection systems, for example rockfall protection or slope stabilisation. Normally hot-dip galvanised carbon steel is used in this case. But in highly corrosive environments like coastal areas, volcanic areas or mines for example, other solutions with a high corrosion resistance and sufficient mechanical properties are necessary. Protection systems made of high strength duplex stainless steel wires enable a significantly longer service life of the portection systems and therefore a higher level of security.
Domain-specific modelling is increasingly adopted in the software development industry. While open source metamodels like Ecore have a wide impact, they still have some problems. The independent storage of nodes (classes) and edges (references) is currently only possible with complex, specific solutions. Furthermore the developed models are stored in the extensible markup language (XML) data format, which leads to problems with large models in terms of scaling. In this paper we describe an approach that solves the problem of independent classes and references in metamodels and we store the models in the JavaScript Object Notation (JSON) data format to support high scalability. First results of our tests show that the developed approach works and classes and references can be defined independently. In addition, our approach reduces the amount of characters per model by a factor of approximately two compared to Ecore. The entire project is made available as open source under the name MoDiGen. This paper focuses on the description of the metamodel definition in terms of scaling.
Today, many resource-constrained systems, such as embedded systems, still rely on symmetric cryptography for authentication and digital signatures. Asymmetric cryptography provide a higher security level, but software implementations of public-key algorithms on small embedded systems are extremely slow. Hence, such embedded systems require hardware assistance, i.e. crypto coprocessors optimized for public key operations. Many such coprocessor designs aim on high computational performance. In this work, an area efficient elliptic curve cryptography (ECC) coprocessor is presented for applications in small embedded systems where high performance coprocessors are too costly. We propose a simple control unit with a small instruction set that supports different ECC point multiplication (PM) algorithms. The control unit reduces the logic and number of registers compared with other implementations of ECC point multiplications.
We present an alternative approach to grid management in low voltage grids by the use of artificial intelligence. The developed decision support system is based on an artificial neural network (ANN). Due to the fast reaction time of our system, real time grid management will be possible. Remote controllable switches and tap changers in transformer stations are used to actively manage the grid infrastructure. The algorithm can support the distribution system operators to keep the grid in a safe state at any time. Its functionality is demonstrated by a case study using a virtual test grid. The ANN achieves a prediction rate of around 90% for the different grid management strategies. By considering the four most likely solutions proposed by the ANN, the prediction rate increases to 98.8%, with a 0.1 second increase in the running time of the model.
Assessment Literacy
(2015)
In diesem Beitrag wird eine Methode des maschinellen Lernens entwickelt, die die Schlafstadienerkennung untersucht. Übliche Methoden der Schlafanalyse basieren auf der Polysomnographie (PSG). Der präsentierte Ansatz basiert auf Signalen, die ausschließlich nicht-invasiv in einer häuslichen Umgebung gemessen werden können. Bewegungs-, Herzschlags- und Atmungssignale können vergleichsweise leicht erfasst werden aber die Erkennung der Schlafstadien ist dadurch erschwert. Die Signale werden als Zeitreihenfolge strukturiert und in Epochen überführt. Die Leistungsfähigkeit von maschinellem Lernen wird der Polysomnographie gegenübergestellt und bewertet.
Martensitic stainless steels has a wide use, for example for blades, knifes or cutter. The best corrosion resistance of these materials is in hardened condition. For better mechanical properties a tempering is normally applied to increase the durability. The tempering is also reducing the hardness and finally the corrosion resistance. Austempering is meanly used at low alloyed steels and brings a good compromise between durability, hardness and corrosion resistance. For martensitic stainless steels, austempering is normally not a topic because of the very long tempering times.
This work shows first results of austempering of some standard martensitic stainless steels and the influence to corrosion resistance. For reference, hardened and also hardened and tempered specimens were investigated. The corrosions resistance was investigated by electrochemical methods.
Bauhäusler am Bodensee
(2016)
Beyond the SDG compass
(2015)
It is well known that signal constellations which are based on a hexagonal grid, so-called Eisenstein constellations, exhibit a performance gain over conventional QAM ones. This benefit is realized by a packing and shaping gain of the Eisenstein (hexagonal) integers in comparison to the Gaussian (complex) integers. Such constellations are especially relevant in transmission schemes that utilize lattice structures, e.g., in MIMO communications. However, for coded modulation, the straightforward approach is to combine Eisenstein constellations with ternary channel codes. In this paper, a multilevel-coding approach is proposed where encoding and multistage decoding can directly be performed with state-of-the-art binary channel codes. An associated mapping and a binary set partitioning are derived. The performance of the proposed approach is contrasted to classical multilevel coding over QAM constellations. To this end, both the single-user AWGN scenario and the (multiuser) MIMO broadcast scenario using lattice-reduction-aided preequalization are considered. Results obtained from numerical simulations with LDPC codes complement the theoretical aspects.
Stress is a recognized as a predominant disease with growing costs of treatment. The approach presented here is aimed to detect stress using a light weighted, mobile, cheap and easy to use system. The result shows that stress can be detected even in case a person’s natural bio vital data is out of the main range. The system enables storage of measured data, while maintaining communication channels of online and post-processing.
The reliability of flash memories suffers from various error causes. Program/erase cycles, read disturb, and cell to cell interference impact the threshold voltages and cause bit errors during the read process. Hence, error correction is required to ensure reliable data storage. In this work, we investigate the bit-labeling of triple level cell (TLC) memories. This labeling determines the page capacities and the latency of the read process. The page capacity defines the redundancy that is required for error correction coding. Typically, Gray codes are used to encode the cell state such that the codes of adjacent states differ in a single digit. These Gray codes minimize the latency for random access reads but cannot balance the page capacities. Based on measured voltage distributions, we investigate the page capacities and propose a labeling that provides a better rate balancing than Gray labeling.
Corporate entrepreneurship (CE) supports the strategic renewal of established companies. Corporate venturing represents one key concept of CE that supports companies to strengthen their innovation capabilities. For the successful implementation of corporate ventures dual structures are recommended. The question, how the interface should be designed, plays a crucial role. Although it seems to be an important factor, this aspect requires further attention. One relevant element of the interface design are the different roles of the individuals that are interacting within the interface. This study is based on nine interviews that are representing six internal corporate ventures within one large German corporate from the ICT sector. The results that were mirrored with short case studies of 25 additional companies of the data sample, contribute to a better understanding of the interface design by adding insights about roles in corporate entrepreneurship. This deeper understanding about roles allows to draw conclusions on the interface design from a structural point of view.
Research on Shadow IT is facing a conceptual dilemma in cases where previously "covert" systems developed by business entities (individual users, business workgroups, or business units) are integrated in the organizational IT management. These systems become visible, are therefore not "in the shadows" anymore, and subsequently do not fit to existing definitions of Shadow IT. Practice shows that some information systems share characteristics of Shadow IT, but are created openly in alignment with the IT department. This paper therefore proposes the term "Business-managed IT" to describe "overt" information systems developed or managed by business entities. We distinguish Business-managed IT from Shadow IT by illustrating case vignettes. Accordingly, our contribution is to suggest a concept and its delineation against other concepts. In this way, IS researchers interested in IT originated from or maintained by business entities can construct theories with a wider scope of application that are at the same time more specific to practical problems. In addition, value-laden terminology is complemented by a vocabulary that values potentially innovative developments by business entities more adequately. From a practical point of view, the distinction can be used to discuss the distribution of task responsibilities for information systems.
In previous studies, we used a method for detecting stress that was based exclusively on heart rate and ECG for differentiation between such situations as mental stress, physical activity, relaxation, and rest. As a response of the heart to these situations, we observed different behavior in the Root Mean Square of the Successive differences heartbeats (RMSSD). This study aims to analyze Virtual Reality via a virtual reality headset as an effective stressor for future works. The value of the Root Mean Square of the Successive Differences is an important marker for the parasympathetic effector on the heart and can provide information about stress. For these measurements, the RR interval was collected using a breast belt. In these studies, we can observe the Root Mean Square of the successive differences heartbeats. Additional sensors for the analysis were not used. We conducted experiments with ten subjects that had to drive a simulator for 25 minutes using monitors and 25 minutes using virtual reality headset. Before starting and after finishing each simulation, the subjects had to complete a survey in which they had to describe their mental state. The experiment results show that driving using virtual reality headset has some influence on the heart rate and RMSSD, but it does not significantly increase the stress of driving.
Corporate entrepreneurship (CE) supports the strategic renewal of established companies. Corporate venturing represents one key concept of CE that supports companies to strengthen their innovation capabilities. For the successful implementation of corporate ventures dual structures are recommended. The question, how the interface should be designed, plays a crucial role. Although it seems to be an important factor, this aspect requires further attention. One relevant element of the interface design are the different roles of the individuals that are interacting within the interface. This study is based on nine interviews that are representing six internal corporate ventures within one large German corporate from the ICT sector. The results that were mirrored with short case studies of 25 additional companies of the data sample, contribute to a better understanding of the interface design by adding insights about roles in corporate entrepreneurship. This deeper understanding about roles allows to draw conclusions on the interface design from a structural point of view.
Spatial modulation is a low-complexity multipleinput/ multipleoutput transmission technique. The recently proposed spatial permutation modulation (SPM) extends the concept of spatial modulation. It is a coding approach, where the symbols are dispersed in space and time. In the original proposal of SPM, short repetition codes and permutation codes were used to construct a space-time code. In this paper, we propose a similar coding scheme that combines permutation codes with codes over Gaussian integers. Short codes over Gaussian integers have good distance properties. Furthermore, the code alphabet can directly be applied as signal constellation, hence no mapping is required. Simulation results demonstrate that the proposed coding approach outperforms SPM with repetition codes.
Comparison and Identifiability Analysis of Friction Models for the Dither Motion of a Solenoid
(2018)
In this paper, the mechanical subsystem of a proportional solenoid excited by a dither signal is considered. The objective is to find a suitable friction model that reflects the characteristic mechanical properties of the dynamic system. Several different friction models from the literature are compared. The friction models are evaluated with respect to their accuracy as well as their practical identifiability, the latter being quantified based on the Fisher information matrix.
Good sleep is crucial for a healthy life of every person. Unfortunately, its quality often decreases with aging. A common approach to measuring the sleep characteristics is based on interviews with the subjects or letting them fill in a daily questionnaire and afterward evaluating the obtained data. However, this method has time and personal costs for the interviewer and evaluator of responses. Therefore, it would be important to execute the collection and evaluation of sleep characteristics automatically. To do that, it is necessary to investigate the level of agreement between measurements performed in a traditional way using questionnaires and measurements obtained using electronic monitoring devices. The study presented in this manuscript performs this investigation, comparing such sleep characteristics as "time going to bed", "total time in bed", "total sleep time" and "sleep efficiency". A total number of 106 night records of elderly persons (aged 65+) were analyzed. The results achieved so far reveal the fact that the degree of agreement between the two measurement methods varies substantially for different characteristics, from 31 minutes of mean difference for "time going to bed" to 77 minutes for "total sleep time". For this reason, a direct exchange of objective and subjective measuring methods is currently not possible.
Three-level inverters are used in electrical drive systems, as grid infeed inverter in PV power plants or as active power line filters. Up to now so called hard switching topologies have been used. A new 'Soft Switching Three Level Inverter (S3L Inverter)' which is now available provides reduced switching losses and higher efficiency. In this paper the S3L inverter is compared with a hard switching T-type inverter topology (H3L inverter). S3L inverters provide higher efficiency and additionally advantages in electromagnetic compatibility due to the soft switching performance, especially when using the 'Super Soft Switching Three Level Inverter (SS3L Inverter)'.
This work investigates data compression algorithms for applications in non-volatile flash memories. The main goal of the data compression is to minimize the amount of user data such that the redundancy of the error correction coding can be increased and the reliability of the error correction can be improved. A compression algorithm is proposed that combines a modified move-to-front algorithm with Huffman coding. The proposed data compression algorithm has low complexity, but provides a compression gain comparable to the Lempel-Ziv-Welch algorithm.
Long-term sleep monitoring can be done primarily in the home environment. Good patient acceptance requires low user and installation barriers. The selection of parameters in this approach is significantly limited compared to a PSG session. The aim is a qualified selection of parameters, which on the one hand allow a sufficiently good classification of sleep phases and on the other hand can be detected by non-invasive methods.
A method is investigated by which tight bounds on the range of a multivariate rational function over a box can be computed. The approach relies on the expansion of the numerator and denominator polynomials in Bernstein polynomials. Convergence of the bounds to the range with respect to degree elevation of the Bernstein expansion, to the width of the box and to subdivision are proven and the inclusion isotonicity of the related enclosure function is shown.
Corporate venturing is one way for corporations to
introduce strategic renewal into their business portfolios, which is
imperative for ongoing success in innovation-driven industries.
Prior research finds that corporate ventures should be separated
from the mainstream business in loosely coupled sub-units, but
scholars continue to discuss how loose or tight the ventures should
be to balance exploration and exploitation. Hence, the antecedents
for successful venture management are yet to be fully explored and
our study contributes to this effort. The study shows that
corporate venture success is enhanced when corporate
management grants job and strategic autonomy to the venture
managers. This is further amplified when corporate management
simultaneously imposes an exploitative policy that forces venture
managers to prioritize extensions to and improvements of existing
competences and product-market offerings.
Corrosion
(2016)
As a result of increasing needs and shrinking resources, aquaculture is gaining progressively significance in the recent years. Ecological issues such as negative effects on the ecological system due to the high fish density in the farms, the use of copper as antifouling strategy etc. are very present, particularly regarding the increasing number of fish going to be produced in farms in the future. Current trends focus on larger farms operated offshore. To make these farms working safe and economical, reliability has to be improved and maintenance costs need to be reduced. Also, alternatives with higher mechanical strength compared to current textile net materials as well as common metal wires might be necessary. In the last years, a new net system made of high strength duplex stainless steel wires with environmentally friendly antifouling properties suitable for offshore applications was developed. The first nets are operating for one year now as predator protection (i.e. seals) for fish farms and show a good performance in cleaning capability and predator protection. But in the real usage, some corrosion effects in the contact points of the net made of duplex stainless steel 1.4362 occur which were not observed in preliminary tests in laboratory and at different test sites around the world. These corrosion effects endanger the sustainable success of the net system. In this work, the observed corrosion effects are investigated. A laboratory test, which simulates the movement in the contact points of the net, was developed. Two pieces of wire are bent in the middle and get stucked into each other. One wire is fixed at both ends and the second wire is fixed on one end. On the other end, a circular movement with 1-2 rps and a 1 cm displacement is applied. The movement generates friction between the wires and the passive layer will be locally damaged. When the movement stops, a repassivation starts. The passivity breakdown and the repassivation were measured with electrochemical techniques. During the friction phase, when the surface will be activated, the open circuit potential breaks down. When the friction stops, the OCP increases. Between the movement phases, measurements of critical pitting potential were done. Thereby the quality of repassivation was investigated. The tests were done in a 3% sodium chloride solution. Different temperatures were tested as well as the influence of air saturation and low oxygen content.
Uncertainty about the future requires companies to create discontinuous innovations. Established companies, however, struggle to do so; whereas independent startups seem to better cope with this. Consequently, established companies set up entrepreneurial initiatives to make use of startups' benefits. Consequently, this led-amongst others-to great interest in socalled corporate entrepreneurship (CE) programs and to the development and characterization of several different forms. Their processes to achieve certain objectives, yet, are still rather ineffective. Thus, considerations of the actions performed in preparation for and during CE programs could be one approach to improve this but are still absent today. Furthermore, the increasing use of several CE programs in parallel seems to bear the potential for synergies and, thus, more efficient use of resources. Aiming to provide insights to both issues, this study analyzes actions of CE programs, by looking at interviews with managers of seven corporate incubators and accelerator programs of five established German tech-companies.
CSR und Compliance
(2015)
The ageing infrastructure in ports requires regular inspection. This inspection is currently carried out manually by divers who sense by hand the entire underwater infrastructure. This process is cost-intensive as it involves a lot of time and human resources. To overcome these difficulties, we propose to scan the above and underwater port structure with a Multi-SensorSystem, and -by a fully automated processto classify the obtained point cloud into damaged and undamaged zones. We make use of simulated training data to test our approach since not enough training data with corresponding class labels are available yet. To that aim, we build a rasterised heightfield of a point cloud of a sheet pile wall by cutting it into verticall slices. The distance from each slice to the corresponding line generates the heightfield. This latter is propagated through a convolutional neural network which detects anomalies. We use the VGG19 Deep Neural Network model pretrained on natural images. This neural network has 19 layers and it is often used for image recognition tasks. We showed that our approach can achieve a fully automated, reproducible, quality-controlled damage detection which is able to analyse the whole structure instead of the sample wise manual method with divers. The mean true positive rate is 0.98 which means that we detected 98 % of the damages in the simulated environment.
Deep 3D
(2017)